化学

潮解是物理性质还是化学性质?

1.潮解是物理变化还是物理变化?潮解是属于物理变化。有些晶体能自发吸收空气中的水蒸气,在它们的固体表面逐渐形成饱和溶液,它的水蒸气压若是低于空气中的水蒸气压,则平衡向着潮解的方向进行,水分子向物质表面移动。这种现象叫做潮解。2.那硫酸铜与水结合是什么反应?硫酸铜与水反应.生成结晶体.是化学变化当硫酸铜晶体溶于水时,有没有发生化学变化,所形成的溶液中的分子是硫酸铜分子和水分子,还是硫酸铜晶体分子和水分子?有化学变化,硫酸铜分子和水分子另外,水中应该只存在离子的形态

潮解是物理变化还是化学变化

潮解是物理变化. 有些固体能自发吸收空气中的水蒸气,在它们的表面逐渐形成饱和溶液,这种现象叫做潮解.从这个定义来看,潮解过程并没有化学变化.

氢氧化钠潮解是物理变化还是化学变化

氢氧化钠潮解是化学变化扩展资料:潮解(Deliquescence)指的是某些物质(多指固体)从空气中吸收或者吸附水分,使得表面逐渐变得潮湿、滑润,最后物质就会从固体变为该物质的溶液的现象。无水氯化钙、氯化镁和固体氢氧化钠在空气中很容易潮解。有些无水晶体潮解后在表面形成饱和溶液,还变成水合物。如无水氯化钙潮解后变成CaCl2·6H2O;有些只在表面形成饱和溶液,如氢氧化钠固体。由于化合物饱和溶液的蒸气压低于同温下空气中的水蒸气的分压,因而使该物质不断吸收水分而潮解。溶液的水蒸气压跟溶液的浓度有关(当然还跟电解质的电离度有关),只有饱和溶液的浓度足够大,才能保证它的水蒸气压足够小(小于空气中的水蒸气压)。因此,能够发生潮解的都是那些溶解度特别大的物质。纯净的氯化钠晶体不潮解。同时,潮解的发生还与空气的相对湿度有关。因此,在称量NaOH时要用烧杯,而不是用纸。易潮解的物质通常是在水中溶解度大的,如大部分的硝酸盐(硝酸铁、硝酸汞等)、大部分的高氯酸盐(高氯酸铜、高氯酸锌等)、一些卤化物(氯化锌、氯化镁等)、一些钠盐、铯盐(如高锰酸钠、碳酸铯等)之类的化合物。一些物质如果可以和空气中的组分反应,产生水,那么会加速潮解,比如氢氧化钠与空气中的二氧化碳反应时,便会产生水。需要注意的是,有些化合物虽然在水中溶解度大,但是不易或不会潮解,比如硝酸铅。易潮解的物质常用作干燥剂,以吸收液体或气体的水分。其中,NaOH只作为中性或碱性气体的干燥剂。易潮解的物质必须在密闭条件下保存;易潮解的药物(特别是原料药)更要在防潮条件下贮存,以防霉烂变质。

结晶是物理变化还是化学变化?潮解相当于形成结晶水合物的过程吗?

物理变化。潮解就是吸收了空气中的水分,吸多了后就融于水。其实就相当于小部分融于水了。我的回答完毕,谢谢。

酸化和潮解是物理变化还是化学变化

都是物理变化。有些固体能自发吸收空气中的水蒸气,在它们的表面逐渐形成饱和溶液,这种现象叫做潮解。从这个定义来看,潮解过程并没有化学变化。因为没有生成新的物质,只是在溶液中加入了一种物质。(但是如果在碱溶液中加入酸的话就是发生了化学变化,因为发生了酸碱中和)

潮解性是物理变化还是化学变化

1.潮解是物理变化还是物理变化?潮解是属于物理变化。有些晶体能自发吸收空气中的水蒸气,在它们的固体表面逐渐形成饱和溶液,它的水蒸气压若是低于空气中的水蒸气压,则平衡向着潮解的方向进行,水分子向物质表面移动。这种现象叫做潮解。2.那硫酸铜与水结合是什么反应?硫酸铜与水反应.生成结晶体.是化学变化当硫酸铜晶体溶于水时,有没有发生化学变化,所形成的溶液中的分子是硫酸铜分子和水分子,还是硫酸铜晶体分子和水分子?有化学变化,硫酸铜分子和水分子另外,水中应该只存在离子的形态

分别举五个物理变化和化学变化的例子

物理变化:1、水的三态变化;2、胆矾的研磨变成粉末;3、铁水铸成铁锅;4、木棒折断;5、盐溶于水变成盐水。化学变化:1、镁条的燃烧;2、碱式碳酸铜受热分解;3、铁在潮湿空气中生锈;4、火药爆炸;5、纸燃烧。【物理性质】 物质不需要发生化学变化就表现出来的性质 如颜色、气味、状态、熔点、沸点、硬度、密度、溶解性、导电性等。【化学性质】 物质在化学变化中表现出来的性质 如可燃性、稳定性、氧化性、还原性、酸碱性等。【物理变化】 没有生成其它物质的变化 形状变化:铁水铸成铁锅。扩展资料:物质的基本三态变化,并没有新的物质产生出来,所以属于物理变化。NaOH等无机盐、碱的潮解,冰的融化,研碎胆矾等。如铁水铸成铁锅,其中涉及到碳元素和铁元素的结合新分子(一般生成Fe3C),并不算作物理变化,但是如果是百分百的纯铁,铸成铁锅则不发生化学变化,不生成新的相。化学变化过程中总伴随着物理变化。在化学变化过程中通常有发光、放热、也有吸热现象等。按照原子碰撞理论,分子间发生化学变化是通过碰撞完成的,要完成碰撞发生反应的分子需满足两个条件:(1)具有足够的能量;(2)正确的取向。因为反应需克服一定的分子能垒,所以须具有较高的能量来克服分子能垒。两个相碰撞的分子须有正确的取向才能发生旧键断裂。

食盐潮解属于化学变化吗

物理变化

酸化和潮解是物理变化还是化学变化

酸化酸化acidification,是指加酸使体系由碱性或中性变成酸性的过程。如果是在碱中加酸,显然是化学变化; 在中性体系中加酸则不一定了,要看有没有新物质生成。物质缓慢地吸收空气中的水分,或水分中水蒸气被晶状固体吸收,直到结晶溶解为饱和溶液的现象,称为潮解。因为潮解只涉及到物质的吸水溶解,没有新物质的形成,因此属于物理变化。浓硫酸吸水也是物理变化。纯的硫酸中,硫酸是以分子形式存在的,具有强烈的亲水性,很容易吸收水分,并溶解在其中。溶解后的硫酸分子,全部发生电离,形成氢离子和硫酸根离子,这一过程属于化学变化,但就硫酸吸水这样广泛的说法而言,说其是物理变化是没有问题的。不光是水,只要是极性分子,如乙醇等,与浓硫酸混合时,都将使硫酸电离,同时伴随着大量的热放出。前两个过程形成的都是混合物。白色CuSO4固体吸收空气中的水,形成了蓝色的五水硫酸铜结晶水合物,这是一种性质不同于硫酸铜固体的新物质,它是纯净物,因此该变化属于化学变化。

潮解属物理变化还是化学变化?

物理变化列如:有些晶体能自发吸收空气中的水蒸气,在它们的固体表面逐渐形成饱和溶液,它的水蒸气压若是低于空气中的水蒸气压,则平衡向着潮解的方向进行,水分子向物质表面移动。这种现象叫做潮解。无水氯化钙、氯化镁和固体氢氧化钠在空气中很容易潮解。

潮解是物理变化还是化学变化?

潮解是物理变化。潮解指的是某些物质从空气中吸收或者吸附水分,使得表面逐渐变得潮湿、滑润,最后物质就会从固体变为该物质的溶液的现象。潮解属于物理变化,要注意的是,形成溶液的潮解属于物理变化,形成水合物的潮解属于化学变化。注意事项化学上,潮解经常让试剂变质,一是单纯潮解,如硝酸锰水合物潮解后得到硝酸锰溶液,二是潮解时伴随反应,如高氯酸亚铁在潮解的时候就会迅速和氧反应,产生铁的碱式高氯酸盐。为了防止潮解,需要将这类试剂密封干燥保存,必要时放入干燥器,以变色硅胶作为水的指示剂。

潮解是物理变化还是化学变化?

潮解是物理变化。有些固体能自发吸收空气中的水蒸气,在它们的表面逐渐形成饱和溶液,这种现象叫做潮解。从这个定义来看,潮解过程并没有化学变化。易潮解的物质通常是在水中溶解度大的,如大部分的硝酸盐(硝酸铁、硝酸汞等)、大部分的高氯酸盐(高氯酸铜、高氯酸锌等)、一些卤化物(氯化锌、氯化镁等)、一些钠盐、铯盐(如高锰酸钠、碳酸铯等)之类的化合物。一些物质如果可以和空气中的组分反应,产生水,那么会加速潮解,比如氢氧化钠与空气中的二氧化碳反应时,便会产生水。需要注意的是,有些化合物虽然在水中溶解度大,但是不易或不会潮解,比如硝酸铅。

潮解是物理变化还是化学变化?

潮解没有新物质生成,是物理变化,不是化学变化

潮解是化学变化还是物理变化?

你好,潮解属于物理变化。就是物质遇到水使它变得湿润了。只是状态的变化,没有新物质生成,故属于物理变化。

潮解是物理变化还是化学变化啊? 谢谢了

形成溶液的潮解属于物理变化,形成水合物的潮解属于化学变化。

潮解是物理变化还是化学变化呢?电解池阳离子向哪里移动呢?

物态变化。潮解是物质(常指固态)从空气中消化吸收或是吸咐水份,促使表层开始变得湿冷、滑嫩,最终物质便会在固态变成该物质的水溶液。仅仅使这一物质从固态变成了水溶液,并没产生化学变化,并没有一个新的物质造成,因而仅仅物态变化。易潮解的物质一般是在水里溶解性大一点的,如绝大部分的磷酸盐(硝酸铁、硝酸汞等)、绝大部分的高氯酸盐(高氯酸铜、高氯酸锌等)、一些卤化(氯化镁、氧化镁等)、一些醋酸盐、铯盐(如高锰酸钠、碳酸铯等)什么的化学物质。一些物质假如能和空气中的多组分反映,造成水,那样会加快潮解,例如氢氧化钠与空气中的二氧化碳反应时,就会造成水。需注意,有一些化学物质尽管水中溶解性大,可是不容易或不会潮解,例如硝酸铅。易潮解的物质常见作防潮剂,以消化吸收液态或汽体水分。在其中,NaOH只做为中性化或碱性气体的防潮剂。易潮解的物质必须要在密闭式环境下储存;易潮解药物(尤其是原辅料)更需在防水环境下存储,防止发霉质变。氢氧化钠溶液潮解是看起来融解,实则是吸取空气中水分,自身品质提升。留意:产生液体的潮解归属于物态变化,产生化合物的潮解归属于化学反应。原电池反应中,溶液的酸碱性里的阳离子向阳极运动。外电路中电子器件由负级流向正级。外电路中电子器件由负级流向正级;内电路(溶液的酸碱性)中阴正离子移向负级,阳离子移向正级;电子器件产生定向移动最终形成电流量,完成了机械能向电能的转化。电解池中正离子流向为阳阴异性相吸,即阳离子流向负极,阳离子流向阳极氧化。充放电时,电流量是以正级到负级,而电子器件是以负级流向正级。因此在正级上粘附有大量电子器件,会吸引住阳离子。可是电解池电池充电的过程当中,只分阴阳极,因为是靠电源供电,因此负极上覆有大量电子器件,他会吸引住阳离子的来,因此负极是吸引住阳离子,阳极氧化是吸引住阳离子。充电放电的一个过程本身就是电解池和原电池反应的一个过程。

潮解性是物理变化还是化学变化?

1.潮解是物理变化还是物理变化?潮解是属于物理变化。有些晶体能自发吸收空气中的水蒸气,在它们的固体表面逐渐形成饱和溶液,它的水蒸气压若是低于空气中的水蒸气压,则平衡向着潮解的方向进行,水分子向物质表面移动。这种现象叫做潮解。2.那硫酸铜与水结合是什么反应?硫酸铜与水反应.生成结晶体.是化学变化当硫酸铜晶体溶于水时,有没有发生化学变化,所形成的溶液中的分子是硫酸铜分子和水分子,还是硫酸铜晶体分子和水分子?有化学变化,硫酸铜分子和水分子另外,水中应该只存在离子的形态

潮解是物理变化还是化学变化

潮解过程开始是物理变化,物质吸收空气中水蒸气并溶解成溶液。也有化学变化,无水化合物吸水成水合物,进一步吸收空气中二氧化碳可产生化学反应如氢氧化钠固体吸水成溶液再吸二氧化碳成碳酸钠再吸水成碳酸钠水合物(十水碳酸钠)。

为什么潮解是物理变化 而 风化是化学变化

潮解是物理变化:是因为潮解是物质(多指固体)从空气中吸收或者吸附水分,使得表面逐渐变得潮湿、滑润,最后物质就会从固体变为该物质的溶液。他只是使这一物质从固体变为了溶液,并没有发生化学反应,没有新的物质产生,因此只是物理变化。风化是化学变化:是因为在风化的过程中一般会生成新的物质,或者有的物质消失不见了,所以他是一个化学变化的过程。例如,日常生活中碱块变成碱面,就是风化现象,碱块是,而碱面是,中间有个没有了。扩展资料风化过程十分复杂,通常是几种作用同时发生,造成岩石的崩解或分解。以化学风化来说,某些盐类,诸如氯化钠和石膏的结晶作用,也被引证来作为岩石,尤其是干旱地区岩石崩解的原因之一。树根的生长无疑能把大量岩块推开,并扩大原有的节理。甚至地衣的菌丝也能穿透矿物晶体的界面和解理,完成一定的机械崩解。许多矿物在相当程度上溶解于水。某些矿物,例如食盐和石膏等,能与水发生强烈反应,并溶解于水或形成可溶产物。甚至石英,在某种程度上也溶解于水。许多矿物在盐水中比在淡水中更易溶解。在许多情况下,溶解作用可能是化学风化的第一阶段。由于溶解的矿物质(以及固体微粒)在风化剖面中的位移,形成了富含氧化铁、灰质、硅质或石膏的不同的层或盘。在世界各地都有大片砖红土、钙壳和硅壳的堆积。水及其所含的根和气体与各种矿物结合形成新的矿物。这些过程称为水化和水解。例如,铁很容易与水和氧结合,形成各种氧化铁的水化物,许多风化剖面呈黄色或红色的原因即在于此。所有常见的造岩矿物,除石英以外,由于化学风化(主要是水化和水解)都会转变为黏土矿物。氧化作用发生于土壤的包气带,氧化物是表土中的常见成分。碳化作用是像长石这类矿物发生风化的中间步骤。碳酸虽是弱酸,但它是自然界的一种有效的溶剂。硅化和脱硅能使一种黏土转变为另一种黏土。因此,热带地区云母经脱硅化可产生高岭土和氧化铁,如果条件有利,还可能进而形成铝土矿(三水铝石)。参考资料:百度百科-潮解百度百科-风化

化学问题潮解是物理变化还是化学变化

(1)潮解---固体吸收空气里的水分,形成溶液!(2)潮解等同溶解过程是物理化学变化!(3)潮解也有水合过程---化学变化;扩散过程---物理变化!

潮解和风化是物理变化还是化学变化

潮解是晶体吸水后溶解在这水中,是溶解过程,是物理变化;不是与这水形成结晶水合物.风化是晶体在常温时失去结晶水,加热时失去结晶水不算.加热晶体失去结晶水,化学中没有专门名称.不管是加热还是风化失去结晶水,都是化学变化.风化是化学变化.风化是指结晶水合物失去结晶水的过程.我们说硫酸铜(白色粉末)和胆矾(蓝色五水硫酸铜)不是同一种物质.即风化过程有新物质生成,是化学变化.而潮解则是物质的吸水本领较强.吸附了空气中的水.相当于形成了溶液.当然物质种类,数量均未发生变化.是物理变化.

酸化和潮解是物理变化还是化学变化

酸化酸化acidification,是指加酸使体系由碱性或中性变成酸性的过程。如果是在碱中加酸,显然是化学变化;在中性体系中加酸则不一定了,要看有没有新物质生成。物质缓慢地吸收空气中的水分,或水分中水蒸气被晶状固体吸收,直到结晶溶解为饱和溶液的现象,称为潮解。因为潮解只涉及到物质的吸水溶解,没有新物质的形成,因此属于物理变化。浓硫酸吸水也是物理变化。纯的硫酸中,硫酸是以分子形式存在的,具有强烈的亲水性,很容易吸收水分,并溶解在其中。溶解后的硫酸分子,全部发生电离,形成氢离子和硫酸根离子,这一过程属于化学变化,但就硫酸吸水这样广泛的说法而言,说其是物理变化是没有问题的。不光是水,只要是极性分子,如乙醇等,与浓硫酸混合时,都将使硫酸电离,同时伴随着大量的热放出。前两个过程形成的都是混合物。白色CuSO4固体吸收空气中的水,形成了蓝色的五水硫酸铜结晶水合物,这是一种性质不同于硫酸铜固体的新物质,它是纯净物,因此该变化属于化学变化。

一直认为潮解全是物理变化,书上怎么说既有物理变化,也有化学变化?举几个例子说明一下吧?谢谢!

有些晶体能自发吸收空气中的水蒸气,在它们的固体表面逐渐形成饱和溶液,这种现象叫做潮解。--从潮解的定义看,潮解一般是物理变化,而且是在刚开始学习化学时为了对比物理变化和化学变化而提出来的。 易潮解的物质有CaC12、MgC12 FeC13 AIC13、NaOH等无机盐、碱。易潮解的物质常用作干燥剂,以吸收液体或气体的水分。易潮解的物质必须在密闭条件下保存;易潮解的药物(特别是原料药)更要在防潮条件下贮存,以防霉烂变质。 潮解多是物理变化过程,也有的是化学变化过程。 如果在吸收空气中的水蒸汽过程中生成了结晶水合物,如无水硫酸铜吸收空气中的水蒸气变成五水硫酸铜,那么就是化学变化。--所以我认为,回答潮解是物理变化还是化学变化,要根据具体的物质而定,若晶体潮解后只在表面形成饱和溶液,就是物理变化;若晶体潮解后还变成水合物,就是化学变化。

高一数学化学问题

(问题最好分类问...= =)化学:1.原液可以是混合的胶体溶液,含有离子、胶粒、其它溶质和液体溶剂。渗析液含有的胶粒浓度应该远远小于原液,其它成分基本和原液相同。理想的渗析应该会把所有胶粒分离,渗析液中不含胶粒,只含溶质粒子和溶剂。实际上不能完全做到这一点,可以多次进行渗析。2.固溶胶是胶体分散系。凝胶不是胶体。凝胶中的固相物质或有机聚合填充物质没有胶粒那样的集中式结构,分布也是连续的,没有胶粒那么分散。3.接触后聚沉在电极附近的少数物质会阻碍电极继续吸引胶粒引起容易观察的现象(例如颜色深浅改变)。4.酸性氧化物和碱性氧化物(包括两性氧化物)都是成盐氧化物。成盐氧化物有对应的盐,而不成盐氧化物(NO、CO、H2O等)就没有。两性氧化物在中学化学中典型的有Al2O3和ZnO。(事实上CuO也是,不过一般不提酸性。)数学1.在某一确定条件(前提)下,命题A能够无额外条件推出命题B,则A是B的充分条件,B是A的必要条件。A对于B具有充分性,B对于A具有必要性。2.韦达定理一般指一元实系数整式方程中根与系数的关系。中学范围一般只用到二次方程(二次方程属于整式方程,整式方程和分式方程组成有理方程,根式方程和超越方程为无理方程,有理方程和无理方程组成代数方程;代数方程的解是数;代数方程以外还有微分方程等,解可以是函数或其它集合)的部分,有两个直接的定理。设一元二次方程ax^2 + bx + c = 0中,有两复数根x1、x2(根据代数学基本定理,这两根一定存在),则有如下关系:1)x1+x2=-b/a;2)x1x2=c/a。====[原创回答团]

二氧化碳、二氧化硫、二氧化氮、臭氧、一氧化碳、氧气、甲烷。求物理性质化学性质,用途以及对环境的影响

二氧化碳:无色无味,易溶于水,不助然,不可燃,与澄清石灰水相遇,可使澄清石灰水变浑浊,可用于灭火,温室气体。二氧化硫:无色,有刺激性气味,易溶于水生成硫酸,是有害气体,危害人体健康,污染空气。二氧化氮:棕红色气体。臭氧,无色,有鱼腥臭味,是臭氧层的主要物质。一氧化碳:无色无味,可燃,燃烧时放出大量的热,火焰呈蓝色,可与人体血红蛋白结合,造成生命体内缺氧,具有还原性,氧气:无色无味,助燃,不可燃,不易溶于水,密度比空气大,支持呼吸,可使带火星的小木条复燃,具有氧化性。甲烷:最简单的化合物,无色无味,可燃,可作燃料。

溴苯溴分离化学

一般而言,溴苯是有机物,溴为无机物。有机物和无机物是不溶的,因此会出现分层现象。故可用分液将两者分离。但是,溴是很特殊的无机物,它易溶于有机物,因此溴会与溴苯互溶,而氢氧化钠会与溴反应,一单位的溴与两单位的氢氧化钠可以生成一单位的溴化钠和一单位的溴氧化钠和一单位的水,因此,先加入氢氧化钠,会出现分层现象,进而再分液,即可将溴与溴苯分离。 溴苯:是一种苯的卤代物。无色至淡黄色澄清液体,有特殊的芳香气味。化工上主要用于溶剂、分析试剂和有机合成等。易燃,遇高热、明火及强氧化剂易引起燃烧。吸入该

高中化学,水和煤焦油都是干什么的,实验原理是什么?反应式是什么?谢谢

有机化学基础实验(一) 烃 1. 甲烷的氯代(必修2、P56)(性质) 验:取一个100mL的大量筒(或集气瓶),用排 水 的方法先后收集20mLCH4和80mLCl2,放在光亮的地方(注意:不要放在阳光直射的地方,以免引起爆炸),等待片刻,观察发生的现象. 现象:大约3min后,可观察到混合气体颜色变浅,气体体积缩小,量筒壁上出现 油状液体 ,量筒内饱和食盐水液面 上升 ,可能有晶体析出【会生成HCl,增加了饱和食盐水】解释: 生成卤代烃 2. 石油的分馏(必修2、P57,重点)(分离提纯)(1) 两种或多种 沸点 相差较大且 互溶 的液体混合物,要进行分离时,常用蒸馏或分馏的分离方法. (2) 分馏(蒸馏)实验所需的主要仪器:铁架台(铁圈、铁夹)、石棉网、 蒸馏烧瓶 、带温度计的单孔橡皮塞、 冷凝管 、牛角管、 锥形瓶 . (3) 蒸馏烧瓶中加入碎瓷片的作用是: 防止爆沸 (4) 温度计的位置:温度计的水银球应处于 支管口 (以测量蒸汽温度)(5) 冷凝管:蒸气在冷凝管内管中的流动方向与冷水在外管中的流动方向 下口进,上口出 (6) 用明火加热,注意安全 3. 乙烯的性质实验(必修2、P59)现象:乙烯使KMnO4酸性溶液褪色(氧化反应)(检验)乙烯使溴的四氯化碳溶液褪色(加成反应)(检验、除杂)乙烯的实验室制法: (1) 反应原料:乙醇、浓硫酸(2) 反应原理:CH3CH2OH CH2=CH2↑ + H2O 副反应:2CH3CH2OH CH3CH2OCH2CH3 + H2O C2H5OH + 6H2SO4(浓) 6SO2↑+ 2CO2↑+ 9H2O (3) 浓硫酸:催化剂和脱水剂(混合时即将浓硫酸沿容器内壁慢慢倒入已盛在容器内的无水酒精中,并用玻璃棒不断搅拌)(4) 碎瓷片,以防液体受热时爆沸;石棉网加热,以防烧瓶炸裂. (5) 实验中要通过加热使无水酒精和浓硫酸混合物的温度迅速上升到并稳定于170℃左右.(不能用水浴)(6) 温度计要选用量程在200℃~300℃之间的为宜.温度计的水银球要置于反应物的中央位置,因为需要测量的是反应物的温度. (7) 实验结束时,要先将导气管从水中取出,再熄灭酒精灯,反之,会导致水被倒吸.【记】倒着想,要想不被倒吸就要把水中的导管先拿出来(8) 乙烯的收集方法能不能用排空气法 不能,会爆炸 (9) 点燃乙烯前要_验纯_. (10) 在制取乙烯的反应中,浓硫酸不但是催化剂、吸水剂,也是氧化剂,在反应过程中易将乙醇氧化,最后生成CO2、CO、C等(因此试管中液体变黑),而硫酸本身被还原成SO2.故乙烯中混有_SO2_、__ CO2__. (11) 必须注意乙醇和浓硫酸的比例为1:3,且需要的量不要太多,否则反应物升温太慢,副反应较多,从而影响了乙烯的产率.使用过量的浓硫酸可提高乙醇的利用率,增加乙烯的产量. 4、乙炔的实验室制法: (1) 反应方程式:CaC2+2H2O→C2H2↑+Ca(OH)2(注意不需要加热)(2) 发生装置:固液不加热(不能用启普发生器)(3) 得到平稳的乙炔气流:①常用饱和氯化钠溶液代替水(减小浓度) ②分液漏斗控制流速 ③并加棉花,防止泡沫喷出. (4) 生成的乙炔有臭味的原因:夹杂着H2S、PH3、AsH3等特殊臭味的气体,可用CuSO4溶液或NaOH溶液除去杂质气体(5) 反应装置不能用启普发生器及其简易装置,而改用广口瓶和分液漏斗.为什么?①反应放出的大量热,易损坏启普发生器(受热不均而炸裂).②反应后生成的石灰乳是糊状,可夹带少量CaC2进入启普发生器底部,堵住球形漏斗和底部容器之间的空隙,使启普发生器失去作用. (6) 乙炔使溴水或KMnO4(H+)溶液褪色的速度比较乙烯,是快还是慢,为何? 乙炔慢,因为乙炔分子中叁键的键能比乙烯分子中双键键能大,断键难. 5、苯的溴代(选修5,P50)(性质) (1) 方程式: 原料:溴应是_液溴_用液溴,(不能用溴水;不用加热)加入铁粉起催化作用,但实际上起催化作用的是 FeBr3 . 现象:剧烈反应,三颈瓶中液体沸腾,红棕色气体充满三颈烧瓶.导管口有棕色油状液体滴下.锥形瓶中产生白雾. (2) 顺序:苯,溴,铁的顺序加药品(3) 伸出烧瓶外的导管要有足够长度,其作用是 导气 、冷凝(以提高原料的利用率和产品的收率). (4) 导管未端不可插入锥形瓶内水面以下,因为_HBr气体易溶于水,防止倒吸_(进行尾气吸收,以保护环境免受污染). (5) 反应后的产物是什么?如何分离?纯净的溴苯是无色的液体,而烧瓶中液体倒入盛有水的烧杯中,烧杯底部是油状的褐色液体,这是因为溴苯溶有_溴_的缘故.除去溴苯中的溴可加入_NaOH溶液_,振荡,再用分液漏斗分离.分液后再蒸馏便可得到纯净溴苯(分离苯)(6) 导管口附近出现的白雾,是__是溴化氢遇空气中的水蒸气形成的氢溴酸小液滴_. 探究:如何验证该反应为取代反应? 验证卤代烃中的卤素 ①取少量卤代烃置于试管中,加入NaOH溶液;②加热试管内混合物至沸腾; ③冷却,加入稀硝酸酸化;④加入硝酸银溶液,观察沉淀的颜色. 实验说明: ①加热煮沸是为了加快卤代烃的水解反应速率,因为不同的卤代烃水解难易程度不同. ②加入硝酸酸化,一是为了中和过量的NaOH,防止NaOH与硝酸银反应从而对实验现象的观察产生影响;二是检验生成的沉淀是否溶于稀硝酸. 6、苯的硝化反应(性质) 反应装置:大试管、长玻璃导管、温度计、烧杯、酒精灯等 实验室制备硝基苯的主要步骤如下: ①配制一定比例的浓硫酸与浓硝酸的混和酸,加入反应器中. ②向室温下的混和酸中逐滴加入一定量的苯,充分振荡,混和均匀.【先浓硝酸再浓硫酸→冷却到50-60C,再加入苯(苯的挥发性)】 ③在50-60℃下发生反应,直至反应结束. ④除去混和酸后,粗产品依次用蒸馏水和5%NaOH溶液洗涤,最后再用蒸馏水洗涤. ⑤将用无水CaCl2干燥后的粗硝基苯进行蒸馏,得到纯硝基苯. 【注意事项】(1) 配制一定比例浓硫酸与浓硝酸混和酸时,操作注意事项是:_先浓硝酸再浓硫酸→冷却到50-60C,再加入苯(苯的挥发性) (2) 步骤③中,为了使反应在50-60℃下进行,常用的方法是_水浴_. (3) 步骤④中洗涤、分离粗硝基苯应使用的仪器是_分液漏斗_. (4) 步骤④中粗产品用5%NaOH溶液洗涤的目的是_除去混合酸_. (5) 纯硝基苯是无色,密度比水_大_(填“小”或“大”),具有_苦杏仁味_气味的油状液体. (6) 需要空气冷却(7) 使浓HNO3和浓H2SO4的混合酸冷却到50--60℃以下,这是为何: ①防止浓NHO3分解 ②防止混合放出的热使苯和浓HNO3挥发 ③温度过高有副反应发生(生成苯磺酸和间二硝基苯) (8) 温度计水银球插入水中 浓H2SO4在此反应中作用:催化剂,吸水剂 (二)烃的衍生物 1、溴乙烷的水解(1)反应原料:溴乙烷、NaOH溶液(2)反应原理:CH3CH2Br + H2O CH3CH2OH + HBr 化学方程式:CH3CH2—Br + H—OH CH3—CH2—OH + HBr 注意:(1)溴乙烷的水解反应是可逆反应,为了使正反应进行的比较完全,水解一定要在碱性条件下进行;(3)几点说明:①溴乙烷在水中不能电离出Br-,是非电解质,加AgNO3溶液不会有浅黄色沉淀生成. ②溴乙烷与NaOH溶液混合振荡后,溴乙烷水解产生Br-,但直接去上层清液加AgNO3溶液主要产生的是Ag2O黑色沉淀,无法验证Br-的产生. ③水解后的上层清液,先加稀硝酸酸化,中和掉过量的NaOH,再加AgNO3溶液,产生浅黄色沉淀,说明有Br-产生. 2、乙醇与钠的反应(必修2、P65,选修5、P67~68)(探究、重点)无水乙醇水钠沉于试管底部,有气泡钠熔成小球,浮游于水面,剧烈反应,发出“嘶嘶”声,有气体产生,钠很快消失工业上常用NaOH和乙醇反应,生产时除去水以利于CH3CH2ONa生成实验现象:乙醇与钠发生反应,有气体放出,用酒精灯火焰点燃气体,有“噗”的响声,证明气体为氢气.向反应后的溶液中加入酚酞试液,溶液变红.但乙醇与钠反应没有水与钠反应剧烈. 3、 乙醇的催化氧化(必修2、65)(性质) 把一端弯成螺旋状的铜丝在酒精灯火焰加热,看到铜丝表面变 黑 ,生成 CuO迅速插入盛乙醇的试管中,看到铜丝表面 变红 ;反复多次后,试管中生成有 刺激性 气味的物质(乙醛),反应中乙醇被 氧化 ,铜丝的作用是 催化剂 . 闻到一股刺激性气味,取反应后的液体与银氨溶液反应,几乎得不到银镜;取反应后的液体与新制的Cu(OH)2碱性悬浊液共热,看不到红色沉淀,因此无法证明生成物就是乙醛.通过讨论分析,我们认为导致实验结果不理想的原因可能有2个:①乙醇与铜丝接触面积太小,反应太慢;②反应转化率低,反应后液体中乙醛含量太少,乙醇的大量存在对实验造成干扰. 乙醛的银镜反应(1)反应原料:2%AgNO3溶液、2%稀氨水、乙醛稀溶液(2)反应原理: CH3CHO +2Ag(NH3)2OH CH3COONH4 + 2Ag ↓+ 3NH3 +H2O (3)反应装置:试管、烧杯、酒精灯、滴管银氨溶液的配置:取一支洁净的试管,加入1mL2%的硝酸银,然后一变振荡,一边滴入2%的稀氨水,直到产生的沉淀恰好溶解为止.(注意:顺序不能反)(4)注意事项: ①配制银氨溶液时加入的氨水要适量,不能过量,并且必须现配现用,不可久置,否则会生成容易爆炸的物质. ②实验用的试管一定要洁净,特别是不能有油污. ③必须用水浴加热,不能在火焰上直接加热(否则会生成易爆物质),水浴温度不宜过高. ④如果试管不洁净,或加热时振荡,或加入的乙醛过量时,就无法生成明亮的银镜,而只生成黑色疏松的沉淀或虽银虽能附着在试管内壁但颜色发乌. ⑤实验完毕,试管内的混合液体要及时处理,试管壁上的银镜要及时用少量的硝溶解,再用水冲洗.(废液不能乱倒,应倒入废液缸内)成败关键:1试管要洁净 2.温水浴加热3.不能搅拌4.溶液呈碱性. 5.银氨溶液只能临时配制,不能久置,氨水的浓度以2%为宜.. 能发生银镜的物质:1.甲醛、乙醛、乙二醛等等各种醛类 即含有醛基(比如各种醛,以及甲酸某酯等) 2.甲酸及其盐,如HCOOH、HCOONa等等 3.甲酸酯,如甲酸乙酯HCOOC2H5、甲酸丙酯HCOOC3H7等等 4.葡萄糖、麦芽糖等分子中含醛基的糖 清洗方法实验前使用热的氢氧化钠溶液清洗试管,再用蒸馏水清洗 实验后可以用硝酸来清洗试管内的银镜,硝酸可以氧化银,生成硝酸银,一氧化氮和水银镜反应的用途:常用来定量与定性检验 醛基 ;也可用来制瓶胆和镜子. 与新制Cu(OH)2反应:乙醛被新制的Cu(OH)2氧化(1)反应原料:10%NaOH溶液、2%CuSO4溶液、乙醛稀溶液(2)反应原理:CH3CHO + 2Cu(OH)2 CH3COOH + Cu2O↓+ 2H2O (3)反应装置:试管、酒精灯、滴管(4)注意事项: ①本实验必须在碱性条件下才能成功. ②Cu(OH)2悬浊液必须现配现用,配制时CuSO4溶液的质量分数不宜过大,且NaOH溶液应过量.若CuSO4溶液过量或配制的Cu(OH)2的质量分数过大,将在实验时得不到砖红色的Cu2O沉淀(而是得到黑色的CuO沉淀). 新制Cu(OH)2的配制中试剂滴加顺序 NaOH — CuSO4 — 醛 .试剂相对用量 NaOH过量 反应条件:溶液应为_碱_性,应在__水浴_中加热用途:这个反应可用来检验_醛基__;医院可用于 葡萄糖 的检验. 乙酸的酯化反应:(性质,制备,重点)(1)反应原料:乙醇、乙酸、浓H2SO4、饱和Na2CO3溶液(2)反应原理: (3)反应装置:试管、烧杯、酒精灯 (1) 实验中药品的添加顺序 先乙醇再浓硫酸最后乙酸 (2) 浓硫酸的作用是 催化剂、吸水剂(使平衡右移) . (3) 碳酸钠溶液的作用 ①除去乙酸乙酯中混有的乙酸和乙醇 ②降低乙酸乙酯在水中的溶解度(中和乙酸;吸收乙醇;降低乙酸乙酯的溶解度) (4) 反应后右侧试管中有何现象? 吸收试管中液体分层,上层为无色透明的有果香气味的液体 (5) 为什么导管口不能接触液面? 防止因直接受热不均倒吸 (6) 该反应为可逆反应,试依据化学平衡移动原理设计增大乙酸乙酯产率的方法 小心均匀加热,保持微沸,有利于产物的生成和蒸出,提高产率 (7) 试管:向上倾斜45°,增大受热面积(8) 导管:较长,起到导气、冷凝作用(9) 利用了乙酸乙酯易挥发的特性 油脂的皂化反应(必修2、P69)(性质,工业应用)(1)乙醇的作用 酒精既能溶解NaOH,又能溶解油脂,使反应物溶为均匀的液体 (2)油脂已水解完全的现象是 不分层 (3)食盐的作用 使肥皂发生凝聚而从混合液中析出,并浮在表面 酚醛树脂的制取原理: ①浓盐酸的作用 催化剂 ;②导管的作用 起空气冷凝管的作用——冷凝回流(反应物易挥发);③反应条件 浓HCl、沸水浴 ④生成物的色、态 白色胶状物质 ⑤生成物应用 酒精 浸泡数分钟后再清洗. 反应类型 缩聚 (三)大分子有机物 1. 葡萄糖醛基的检验(必修2、P71)(同前醛基的检验,见乙醛部分)注意:此处与新制Cu(OH)2反应条件为直接加热. 2、蔗糖水解及水解产物的检验(选修5、P93)(性质,检验,重点)实验:这两支洁净的试管里各加入20%的蔗糖溶液1mL,并在其中一支试管里加入3滴稀硫酸(1:5).把两支试管都放在水浴中加热5min.然后向已加入稀硫酸的试管中加入NaOH溶液,至溶液呈碱性.最后向两支试管里各加入2mL新制的银氨溶液,在水浴中加热3min~5min,观察现象. (1) 现象与解释:蔗糖不发生银镜反应,说明蔗糖分子中不含 醛基 ,不显 还原 性.蔗糖在 稀硫酸 的催化作用下发生水解反应的产物具有 还原性 性. (2) 稀硫酸的作用 催化剂 (3) 关键操作 用NaOH中和过量的H2SO4 3. 淀粉的水解及水解进程判断(选修5、P93,必修2、P72)(性质,检验,重点)(1) 实验进程验证:(实验操作阅读必修2第72页) ①如何检验淀粉的存在?碘水 ②如何检验淀粉部分水解?变蓝、砖红色沉淀 ③如何检验淀粉已经完全水解?不变蓝、砖红色沉淀(四)氨基酸与蛋白质 1、氨基酸的检验(选修5、P102)(检验,仅作参考)茚三酮中加入氨基酸,水浴加热,呈 蓝 色 2、蛋白质的盐析与变性(选修5、P103)(性质,重点)(1)盐析是 物理 变化,盐析不影响(影响/不影响)蛋白质的活性,因此可用盐析的方法来分离提纯蛋白质.常见加入的盐是 钾钠铵盐的饱和溶液 . (2)变性是 化学 变化,变性是一个 不可逆 的过程,变性后的蛋白质 不能 在水中重新溶解,同时也失去 活性 . 蛋白质的颜色反应(检验)(1)浓硝酸:条件 微热 ,颜色 黄色 (重点)(2)双缩脲试剂:试剂的制备 同新制Cu(OH)2溶液 ,颜色 紫玫瑰色 (仅作参考)蛋白质受物理或化学因素的影响,改变其分子内部结构和性质的作用.一般认为蛋白质的二级结构和三级结构有了改变或遭到破坏,都是变性的结果.能使蛋白质变性的化学方法有加强酸、强碱、重金属盐、尿素、乙醇、丙酮等;能使蛋白质变性的物理方法有加热(高温)、紫外线及X射线照射、超声波、剧烈振荡或搅拌等. 结果:失去生理活性颜色反应:硝酸与蛋白质反应,可以使蛋白质变黄.这称为蛋白质的颜色反应,常用来鉴别部分蛋白质,是蛋白质的特征反应之一. 蛋白质黄色反应 某些蛋白质跟浓硝酸作用呈黄色,有这种反应的蛋白质分子一般都存在苯环. 乙醇和重铬酸钾仪器试剂:圆底烧瓶、试管、酒精灯、石棉网、重铬酸钾溶液、浓硫酸、无水乙醇实验操作 :在小试管内加入1mL 0.5%重铬酸钾溶液和1滴浓硫酸,在带有塞子和导管的小蒸馏烧瓶内加入无水乙醇,加热后,观察实验现象. 实验现象:反应过程中溶液由橙黄色变成浅绿色. 应用:利用这个原理可制成检测司机是否饮酒的手持装置. 因为乙醇可被重铬酸钾氧化,反应过程中溶液由橙黄色变成浅绿色.刚饮过酒的人呼出的气体中含有酒精蒸汽,因此利用本实验的反应原理,可以制成检测司机是否饮酒的手持装置,检查是否违法酒后驾车. 1、如何用化学方法区别乙醇、乙醛、甲酸和乙酸四种物质的水溶液? 加入新制Cu(OH)2后的现象蓝色沉淀不消失蓝色沉淀不消失蓝色沉淀消失变成蓝色溶液蓝色沉淀消失变成蓝色溶液混合溶液加热后现象无红色沉淀有红色沉淀无红色沉淀有红色沉淀结  论乙醇乙醛乙酸甲酸 2、某芳香族化合物的分子式为C8H8O4,已知1mol该化合物分别与Na、NaOH、NaHCO3反应,消耗三种物质的物质的量之比为3﹕2﹕1,而且该化合物苯环上不存在邻位基团,试写出该化合物的结构简式.   解析:由消耗1mol NaHCO3,可知该化合物一个分子中含有一个羧基:—COOH;由消耗2mol NaOH,可知该化合物一个分子中还含有一个酚羟基:—OH;由消耗3mol Na,可知该化合物一个分子中还含有一个醇羟基:—OH.所以其结构简式为: 三、有机物的分离、提纯  分离是通过适当的方法,把混合物中的几种物质分开(要还原成原来的形式),分别得到纯净的物质;提纯是通过适当的方法把混合物中的杂质除去,以得到纯净的物质(摒弃杂质).常用的方法可以分成两类:  1、物理方法:根据不同物质的物理性质(例如沸点、密度、溶解性等)差异,采用蒸馏、分馏、萃取后分液、结晶、过滤、盐析等方法加以分离.   蒸馏、分馏法:对互溶液体有机混合物,利用各成分沸点相差较大的性质,用蒸馏或分馏法进行分离.如石油的分馏、煤焦油的分馏等.但一般沸点较接近的可以先将一种转化成沸点较高的物质,增大彼此之间的沸点差再进行蒸馏或分馏.如乙醇中少量的水可加入新制的生石灰将水转化为Ca(OH)2,再蒸馏可得无水乙醇.   萃取分液法:用加入萃取剂后分液的方法将液体有机物中的杂质除去或将有机物分离.如混在溴乙烷中的乙醇可加入水后分液除去.硝基苯和水的混合物可直接分液分离.   盐析法:利用在有机物中加入某些无机盐时溶解度降低而析出的性质加以分离的方法.如分离肥皂和甘油混合物可加入食盐后使肥皂析出后分离.提纯蛋白质时可加入浓的(NH4)2SO4溶液使蛋白质析出后分离.   2、化学方法:一般是加入或通过某种试剂(例NaOH、盐酸、Na2CO3、NaCl等)进行化学反应,使欲分离、提纯的混合物中的某一些组分被吸收,被洗涤,生成沉淀或气体,或生成与其它物质互不相溶的产物,再用物理方法进一步分离.   (1)洗气法:此法适用于除去气体有机物中的气体杂质.如除去乙烷中的乙烯,应将混合气体通入盛有稀溴水的洗气瓶,使乙烯生成1,2-二溴乙烷留在洗气瓶中除去.不能用通入酸性高锰酸钾溶液中洗气的方法,因为乙烯与酸性高锰酸钾溶液会发生反应生成CO2混入乙烷中.   除去乙烯中的SO2气体可将混合气体通入盛有NaOH溶液的洗气瓶洗气.   (2)转化法:将杂质转化为较高沸点或水溶性强的物质,而达到分离的目的.如除去乙酸乙酯中少量的乙酸,不可用加入乙醇和浓硫酸使之反应而转化为乙酸乙酯的方法,因为该反应可逆,无法将乙酸彻底除去.应加入饱和Na2CO3溶液使乙酸转化为乙酸钠溶液后用分液的方法除去.   溴苯中溶有的溴可加入NaOH溶液使溴转化为盐溶液再分液除去.   乙醇中少量的水可加入新制的生石灰将水转化为Ca(OH)2,再蒸馏可得无水乙醇. 混合物的提纯

(15分)某化学课外小组用下图装置制取溴苯。?

(15分) (1)苯 液溴 (2)有红棕色气体充满A容器C 6 H 6 + Br 2 C 6 H 5 Br + HBr (3)除去溶于溴苯中的溴 Br 2 + 2NaOH → NaBr + NaBrO + H 2 O;干燥;苯;C (4)除去溴化氢气体中的溴蒸气 (5) 白雾取代反应石蕊试液,溶液变红色(其他合理答案均可) (1)制取溴苯的试剂是苯和液溴,所以分液漏斗中盛放的是苯和液溴。 (2)由于反应放热,而液溴易挥发,所以实验现象是有红棕色气体充满A容器,反应的方程式是C 6 H 6 + Br 2 C 6 H 5 Br + HBr。 (3)由于生成的溴苯中,含有单质溴,所以氢氧化钠溶液的作用是除去溶于溴苯中的溴,反应的方程式是 Br 2 + 2NaOH → NaBr + NaBrO + H 2 O。氯化钙易吸水,所以作用是干燥;由于苯和溴苯都是易溶的,所以溴苯中还含有的物质是苯,需要通过蒸馏的方法除去,即答案选C。 (4)由于单质溴易溶在有机溶剂中,所以四氯化碳的作用是除去溴化氢气体中的溴蒸气,易防止干扰后面的实验。 (5)溴化氢极易和水蒸气结合形成白雾,实验现象是有白雾生成;淡黄色沉淀是溴化银,这说明有溴化氢生成,一层是取代反应;由于溴化氢溶于水显强酸性,所以也可以通过石蕊试液进行验证,而实验现象是溶液显红色。,7,(15分)某化学课外小组用下图装置制取溴苯。 (1)向分液漏斗中加入的试剂是_______________,将试剂慢慢滴入反应器A(A下端活塞关闭)中。 (2) 写出A中反应的化学方程式 _______________ 观察到A中的现象是 。 (3)实验结束时,打开A下端的活塞,让反应液流入B中,充分振荡,目的是 ,写出有关的化学方程式 。然后向分出的粗溴苯中加入少量的无水氯化钙,静置、过滤。加入氯化钙的目的是______;经以上分离操作后,粗溴苯中还含有的主要杂质为______,要进一步提纯,下列操作中必须的是______(填入正确选项前的字母); A重结晶 B过滤 C蒸馏 D萃取 (4)C中盛放CCl 4 的作用是 。 (5)D处导管口可看到的现象是__________________,向试管D中加入AgNO 3 溶液,若产生淡黄色沉淀,则能证明该反应类型是_____________________。另一种验证的方法是向试管D中加入 ,现象是 。

求高中化学难题目

求高中有机化学实验,越多越好,

有机化学基础实验(一) 烃1. 甲烷的氯代(必修2、P56)(性质) 验:取一个100mL的大量筒(或集气瓶),用排 水 的方法先后收集20mLCH4和80mLCl2,放在光亮的地方(注意:不要放在阳光直射的地方,以免引起爆炸),等待片刻,观察发生的现象。现象:大约3min后,可观察到混合气体颜色变浅,气体体积缩小,量筒壁上出现 油状液体 ,量筒内饱和食盐水液面 上升 ,可能有晶体析出【会生成HCl,增加了饱和食盐水】解释: 生成卤代烃 2. 石油的分馏(必修2、P57,重点)(分离提纯)(1) 两种或多种 沸点 相差较大且 互溶 的液体混合物,要进行分离时,常用蒸馏或分馏的分离方法。(2) 分馏(蒸馏)实验所需的主要仪器:铁架台(铁圈、铁夹)、石棉网、 蒸馏烧瓶 、带温度计的单孔橡皮塞、 冷凝管 、牛角管、 锥形瓶 。(3) 蒸馏烧瓶中加入碎瓷片的作用是: 防止爆沸 (4) 温度计的位置:温度计的水银球应处于 支管口 (以测量蒸汽温度)(5) 冷凝管:蒸气在冷凝管内管中的流动方向与冷水在外管中的流动方向 下口进,上口出 (6) 用明火加热,注意安全3. 乙烯的性质实验(必修2、P59)现象:乙烯使KMnO4酸性溶液褪色(氧化反应)(检验)乙烯使溴的四氯化碳溶液褪色(加成反应)(检验、除杂)乙烯的实验室制法:(1) 反应原料:乙醇、浓硫酸(2) 反应原理:CH3CH2OH CH2=CH2↑ + H2O 副反应:2CH3CH2OH CH3CH2OCH2CH3 + H2O C2H5OH + 6H2SO4(浓) 6SO2↑+ 2CO2↑+ 9H2O(3) 浓硫酸:催化剂和脱水剂(混合时即将浓硫酸沿容器内壁慢慢倒入已盛在容器内的无水酒精中,并用玻璃棒不断搅拌)(4) 碎瓷片,以防液体受热时爆沸;石棉网加热,以防烧瓶炸裂。(5) 实验中要通过加热使无水酒精和浓硫酸混合物的温度迅速上升到并稳定于170℃左右。(不能用水浴)(6) 温度计要选用量程在200℃~300℃之间的为宜。温度计的水银球要置于反应物的中央位置,因为需要测量的是反应物的温度。(7) 实验结束时,要先将导气管从水中取出,再熄灭酒精灯,反之,会导致水被倒吸。【记】倒着想,要想不被倒吸就要把水中的导管先拿出来(8) 乙烯的收集方法能不能用排空气法 不能,会爆炸 (9) 点燃乙烯前要_验纯_。(10) 在制取乙烯的反应中,浓硫酸不但是催化剂、吸水剂,也是氧化剂,在反应过程中易将乙醇氧化,最后生成CO2、CO、C等(因此试管中液体变黑),而硫酸本身被还原成SO2。故乙烯中混有_SO2_、__ CO2__。(11) 必须注意乙醇和浓硫酸的比例为1:3,且需要的量不要太多,否则反应物升温太慢,副反应较多,从而影响了乙烯的产率。使用过量的浓硫酸可提高乙醇的利用率,增加乙烯的产量。4、乙炔的实验室制法:(1) 反应方程式:CaC2+2H2O→C2H2↑+Ca(OH)2(注意不需要加热)(2) 发生装置:固液不加热(不能用启普发生器)(3) 得到平稳的乙炔气流:①常用饱和氯化钠溶液代替水(减小浓度) ②分液漏斗控制流速 ③并加棉花,防止泡沫喷出。(4) 生成的乙炔有臭味的原因:夹杂着H2S、PH3、AsH3等特殊臭味的气体,可用CuSO4溶液或NaOH溶液除去杂质气体(5) 反应装置不能用启普发生器及其简易装置,而改用广口瓶和分液漏斗。为什么?①反应放出的大量热,易损坏启普发生器(受热不均而炸裂)。②反应后生成的石灰乳是糊状,可夹带少量CaC2进入启普发生器底部,堵住球形漏斗和底部容器之间的空隙,使启普发生器失去作用。(6) 乙炔使溴水或KMnO4(H+)溶液褪色的速度比较乙烯,是快还是慢,为何? 乙炔慢,因为乙炔分子中叁键的键能比乙烯分子中双键键能大,断键难. 5、苯的溴代(选修5,P50)(性质)(1) 方程式: 原料:溴应是_液溴_用液溴,(不能用溴水;不用加热)加入铁粉起催化作用,但实际上起催化作用的是 FeBr3 。现象:剧烈反应,三颈瓶中液体沸腾,红棕色气体充满三颈烧瓶。导管口有棕色油状液体滴下。锥形瓶中产生白雾。(2) 顺序:苯,溴,铁的顺序加药品(3) 伸出烧瓶外的导管要有足够长度,其作用是 导气 、冷凝(以提高原料的利用率和产品的收率)。(4) 导管未端不可插入锥形瓶内水面以下,因为_HBr气体易溶于水,防止倒吸_(进行尾气吸收,以保护环境免受污染)。(5) 反应后的产物是什么?如何分离?纯净的溴苯是无色的液体,而烧瓶中液体倒入盛有水的烧杯中,烧杯底部是油状的褐色液体,这是因为溴苯溶有_溴_的缘故。除去溴苯中的溴可加入_NaOH溶液_,振荡,再用分液漏斗分离。分液后再蒸馏便可得到纯净溴苯(分离苯)(6) 导管口附近出现的白雾,是__是溴化氢遇空气中的水蒸气形成的氢溴酸小液滴_。探究:如何验证该反应为取代反应? 验证卤代烃中的卤素 ①取少量卤代烃置于试管中,加入NaOH溶液;②加热试管内混合物至沸腾;③冷却,加入稀硝酸酸化;④加入硝酸银溶液,观察沉淀的颜色。实验说明:①加热煮沸是为了加快卤代烃的水解反应速率,因为不同的卤代烃水解难易程度不同。②加入硝酸酸化,一是为了中和过量的NaOH,防止NaOH与硝酸银反应从而对实验现象的观察产生影响;二是检验生成的沉淀是否溶于稀硝酸。6、苯的硝化反应(性质) 反应装置:大试管、长玻璃导管、温度计、烧杯、酒精灯等 实验室制备硝基苯的主要步骤如下:①配制一定比例的浓硫酸与浓硝酸的混和酸,加入反应器中。②向室温下的混和酸中逐滴加入一定量的苯,充分振荡,混和均匀。【先浓硝酸再浓硫酸→冷却到50-60C,再加入苯(苯的挥发性)】③在50-60℃下发生反应,直至反应结束。④除去混和酸后,粗产品依次用蒸馏水和5%NaOH溶液洗涤,最后再用蒸馏水洗涤。⑤将用无水CaCl2干燥后的粗硝基苯进行蒸馏,得到纯硝基苯。【注意事项】(1) 配制一定比例浓硫酸与浓硝酸混和酸时,操作注意事项是:_先浓硝酸再浓硫酸→冷却到50-60C,再加入苯(苯的挥发性) (2) 步骤③中,为了使反应在50-60℃下进行,常用的方法是_水浴_。(3) 步骤④中洗涤、分离粗硝基苯应使用的仪器是_分液漏斗_。(4) 步骤④中粗产品用5%NaOH溶液洗涤的目的是_除去混合酸_。(5) 纯硝基苯是无色,密度比水_大_(填“小”或“大”),具有_苦杏仁味_气味的油状液体。(6) 需要空气冷却(7) 使浓HNO3和浓H2SO4的混合酸冷却到50--60℃以下,这是为何: ①防止浓NHO3分解 ②防止混合放出的热使苯和浓HNO3挥发 ③温度过高有副反应发生(生成苯磺酸和间二硝基苯) (8) 温度计水银球插入水中 浓H2SO4在此反应中作用:催化剂,吸水剂(二)烃的衍生物1、溴乙烷的水解(1)反应原料:溴乙烷、NaOH溶液(2)反应原理:CH3CH2Br + H2O CH3CH2OH + HBr化学方程式:CH3CH2—Br + H—OH CH3—CH2—OH + HBr注意:(1)溴乙烷的水解反应是可逆反应,为了使正反应进行的比较完全,水解一定要在碱性条件下进行;(3)几点说明:①溴乙烷在水中不能电离出Br-,是非电解质,加AgNO3溶液不会有浅黄色沉淀生成。②溴乙烷与NaOH溶液混合振荡后,溴乙烷水解产生Br-,但直接去上层清液加AgNO3溶液主要产生的是Ag2O黑色沉淀,无法验证Br-的产生。③水解后的上层清液,先加稀硝酸酸化,中和掉过量的NaOH,再加AgNO3溶液,产生浅黄色沉淀,说明有Br-产生。2、乙醇与钠的反应(必修2、P65,选修5、P67~68)(探究、重点)无水乙醇水钠沉于试管底部,有气泡钠熔成小球,浮游于水面,剧烈反应,发出“嘶嘶”声,有气体产生,钠很快消失工业上常用NaOH和乙醇反应,生产时除去水以利于CH3CH2ONa生成实验现象:乙醇与钠发生反应,有气体放出,用酒精灯火焰点燃气体,有“噗”的响声,证明气体为氢气。向反应后的溶液中加入酚酞试液,溶液变红。但乙醇与钠反应没有水与钠反应剧烈。3、 乙醇的催化氧化(必修2、65)(性质)把一端弯成螺旋状的铜丝在酒精灯火焰加热,看到铜丝表面变 黑 ,生成 CuO迅速插入盛乙醇的试管中,看到铜丝表面 变红 ;反复多次后,试管中生成有 刺激性 气味的物质(乙醛),反应中乙醇被 氧化 ,铜丝的作用是 催化剂 。 闻到一股刺激性气味,取反应后的液体与银氨溶液反应,几乎得不到银镜;取反应后的液体与新制的Cu(OH)2碱性悬浊液共热,看不到红色沉淀,因此无法证明生成物就是乙醛。通过讨论分析,我们认为导致实验结果不理想的原因可能有2个:①乙醇与铜丝接触面积太小,反应太慢;②反应转化率低,反应后液体中乙醛含量太少,乙醇的大量存在对实验造成干扰。乙醛的银镜反应(1)反应原料:2%AgNO3溶液、2%稀氨水、乙醛稀溶液(2)反应原理: CH3CHO +2Ag(NH3)2OH CH3COONH4 + 2Ag ↓+ 3NH3 +H2O(3)反应装置:试管、烧杯、酒精灯、滴管银氨溶液的配置:取一支洁净的试管,加入1mL2%的硝酸银,然后一变振荡,一边滴入2%的稀氨水,直到产生的沉淀恰好溶解为止。(注意:顺序不能反)(4)注意事项:①配制银氨溶液时加入的氨水要适量,不能过量,并且必须现配现用,不可久置,否则会生成容易爆炸的物质。②实验用的试管一定要洁净,特别是不能有油污。③必须用水浴加热,不能在火焰上直接加热(否则会生成易爆物质),水浴温度不宜过高。④如果试管不洁净,或加热时振荡,或加入的乙醛过量时,就无法生成明亮的银镜,而只生成黑色疏松的沉淀或虽银虽能附着在试管内壁但颜色发乌。⑤实验完毕,试管内的混合液体要及时处理,试管壁上的银镜要及时用少量的硝溶解,再用水冲洗。(废液不能乱倒,应倒入废液缸内)成败关键:1试管要洁净 2.温水浴加热3.不能搅拌4.溶液呈碱性。 5.银氨溶液只能临时配制,不能久置,氨水的浓度以2%为宜。。 能发生银镜的物质:1.甲醛、乙醛、乙二醛等等各种醛类 即含有醛基(比如各种醛,以及甲酸某酯等) 2.甲酸及其盐,如HCOOH、HCOONa等等 3.甲酸酯,如甲酸乙酯HCOOC2H5、甲酸丙酯HCOOC3H7等等 4.葡萄糖、麦芽糖等分子中含醛基的糖 清洗方法实验前使用热的氢氧化钠溶液清洗试管,再用蒸馏水清洗 实验后可以用硝酸来清洗试管内的银镜,硝酸可以氧化银,生成硝酸银,一氧化氮和水银镜反应的用途:常用来定量与定性检验 醛基 ;也可用来制瓶胆和镜子。与新制Cu(OH)2反应:乙醛被新制的Cu(OH)2氧化(1)反应原料:10%NaOH溶液、2%CuSO4溶液、乙醛稀溶液(2)反应原理:CH3CHO + 2Cu(OH)2 CH3COOH + Cu2O↓+ 2H2O(3)反应装置:试管、酒精灯、滴管(4)注意事项:①本实验必须在碱性条件下才能成功。②Cu(OH)2悬浊液必须现配现用,配制时CuSO4溶液的质量分数不宜过大,且NaOH溶液应过量。若CuSO4溶液过量或配制的Cu(OH)2的质量分数过大,将在实验时得不到砖红色的Cu2O沉淀(而是得到黑色的CuO沉淀)。新制Cu(OH)2的配制中试剂滴加顺序 NaOH — CuSO4 — 醛 。试剂相对用量 NaOH过量 反应条件:溶液应为_碱_性,应在__水浴_中加热用途:这个反应可用来检验_醛基__;医院可用于 葡萄糖 的检验。乙酸的酯化反应:(性质,制备,重点)(1)反应原料:乙醇、乙酸、浓H2SO4、饱和Na2CO3溶液(2)反应原理: (3)反应装置:试管、烧杯、酒精灯(1) 实验中药品的添加顺序 先乙醇再浓硫酸最后乙酸 (2) 浓硫酸的作用是 催化剂、吸水剂(使平衡右移) 。(3) 碳酸钠溶液的作用 ①除去乙酸乙酯中混有的乙酸和乙醇 ②降低乙酸乙酯在水中的溶解度(中和乙酸;吸收乙醇;降低乙酸乙酯的溶解度)(4) 反应后右侧试管中有何现象? 吸收试管中液体分层,上层为无色透明的有果香气味的液体 (5) 为什么导管口不能接触液面? 防止因直接受热不均倒吸 (6) 该反应为可逆反应,试依据化学平衡移动原理设计增大乙酸乙酯产率的方法 小心均匀加热,保持微沸,有利于产物的生成和蒸出,提高产率 (7) 试管:向上倾斜45°,增大受热面积(8) 导管:较长,起到导气、冷凝作用(9) 利用了乙酸乙酯易挥发的特性油脂的皂化反应(必修2、P69)(性质,工业应用)(1)乙醇的作用 酒精既能溶解NaOH,又能溶解油脂,使反应物溶为均匀的液体 (2)油脂已水解完全的现象是 不分层 (3)食盐的作用 使肥皂发生凝聚而从混合液中析出,并浮在表面 酚醛树脂的制取原理: ①浓盐酸的作用 催化剂 ;②导管的作用 起空气冷凝管的作用——冷凝回流(反应物易挥发);③反应条件 浓HCl、沸水浴 ④生成物的色、态 白色胶状物质 ⑤生成物应用 酒精 浸泡数分钟后再清洗。反应类型 缩聚 (三)大分子有机物1. 葡萄糖醛基的检验(必修2、P71)(同前醛基的检验,见乙醛部分)注意:此处与新制Cu(OH)2反应条件为直接加热。2、蔗糖水解及水解产物的检验(选修5、P93)(性质,检验,重点)实验:这两支洁净的试管里各加入20%的蔗糖溶液1mL,并在其中一支试管里加入3滴稀硫酸(1:5)。把两支试管都放在水浴中加热5min。然后向已加入稀硫酸的试管中加入NaOH溶液,至溶液呈碱性。最后向两支试管里各加入2mL新制的银氨溶液,在水浴中加热3min~5min,观察现象。(1) 现象与解释:蔗糖不发生银镜反应,说明蔗糖分子中不含 醛基 ,不显 还原 性。蔗糖在 稀硫酸 的催化作用下发生水解反应的产物具有 还原性 性。(2) 稀硫酸的作用 催化剂 (3) 关键操作 用NaOH中和过量的H2SO4 3. 淀粉的水解及水解进程判断(选修5、P93,必修2、P72)(性质,检验,重点)(1) 实验进程验证:(实验操作阅读必修2第72页)①如何检验淀粉的存在?碘水②如何检验淀粉部分水解?变蓝、砖红色沉淀③如何检验淀粉已经完全水解?不变蓝、砖红色沉淀(四)氨基酸与蛋白质1、氨基酸的检验(选修5、P102)(检验,仅作参考)茚三酮中加入氨基酸,水浴加热,呈 蓝 色2、蛋白质的盐析与变性(选修5、P103)(性质,重点)(1)盐析是 物理 变化,盐析不影响(影响/不影响)蛋白质的活性,因此可用盐析的方法来分离提纯蛋白质。常见加入的盐是 钾钠铵盐的饱和溶液 。(2)变性是 化学 变化,变性是一个 不可逆 的过程,变性后的蛋白质 不能 在水中重新溶解,同时也失去 活性 。蛋白质的颜色反应(检验)(1)浓硝酸:条件 微热 ,颜色 黄色 (重点)(2)双缩脲试剂:试剂的制备 同新制Cu(OH)2溶液 ,颜色 紫玫瑰色 (仅作参考)蛋白质受物理或化学因素的影响,改变其分子内部结构和性质的作用。一般认为蛋白质的二级结构和三级结构有了改变或遭到破坏,都是变性的结果。能使蛋白质变性的化学方法有加强酸、强碱、重金属盐、尿素、乙醇、丙酮等;能使蛋白质变性的物理方法有加热(高温)、紫外线及X射线照射、超声波、剧烈振荡或搅拌等。结果:失去生理活性颜色反应:硝酸与蛋白质反应,可以使蛋白质变黄。这称为蛋白质的颜色反应,常用来鉴别部分蛋白质,是蛋白质的特征反应之一。 蛋白质黄色反应 某些蛋白质跟浓硝酸作用呈黄色,有这种反应的蛋白质分子一般都存在苯环。 乙醇和重铬酸钾仪器试剂:圆底烧瓶、试管、酒精灯、石棉网、重铬酸钾溶液、浓硫酸、无水乙醇实验操作 :在小试管内加入1mL 0.5%重铬酸钾溶液和1滴浓硫酸,在带有塞子和导管的小蒸馏烧瓶内加入无水乙醇,加热后,观察实验现象。实验现象:反应过程中溶液由橙黄色变成浅绿色。应用:利用这个原理可制成检测司机是否饮酒的手持装置。因为乙醇可被重铬酸钾氧化,反应过程中溶液由橙黄色变成浅绿色。刚饮过酒的人呼出的气体中含有酒精蒸汽,因此利用本实验的反应原理,可以制成检测司机是否饮酒的手持装置,检查是否违法酒后驾车。1、如何用化学方法区别乙醇、乙醛、甲酸和乙酸四种物质的水溶液?加入新制Cu(OH)2后的现象蓝色沉淀不消失蓝色沉淀不消失蓝色沉淀消失变成蓝色溶液蓝色沉淀消失变成蓝色溶液混合溶液加热后现象无红色沉淀有红色沉淀无红色沉淀有红色沉淀结  论乙醇乙醛乙酸甲酸2、某芳香族化合物的分子式为C8H8O4,已知1mol该化合物分别与Na、NaOH、NaHCO3反应,消耗三种物质的物质的量之比为3﹕2﹕1,而且该化合物苯环上不存在邻位基团,试写出该化合物的结构简式。  解析:由消耗1mol NaHCO3,可知该化合物一个分子中含有一个羧基:—COOH;由消耗2mol NaOH,可知该化合物一个分子中还含有一个酚羟基:—OH;由消耗3mol Na,可知该化合物一个分子中还含有一个醇羟基:—OH。所以其结构简式为:三、有机物的分离、提纯  分离是通过适当的方法,把混合物中的几种物质分开(要还原成原来的形式),分别得到纯净的物质;提纯是通过适当的方法把混合物中的杂质除去,以得到纯净的物质(摒弃杂质)。常用的方法可以分成两类:  1、物理方法:根据不同物质的物理性质(例如沸点、密度、溶解性等)差异,采用蒸馏、分馏、萃取后分液、结晶、过滤、盐析等方法加以分离。  蒸馏、分馏法:对互溶液体有机混合物,利用各成分沸点相差较大的性质,用蒸馏或分馏法进行分离。如石油的分馏、煤焦油的分馏等。但一般沸点较接近的可以先将一种转化成沸点较高的物质,增大彼此之间的沸点差再进行蒸馏或分馏。如乙醇中少量的水可加入新制的生石灰将水转化为Ca(OH)2,再蒸馏可得无水乙醇。  萃取分液法:用加入萃取剂后分液的方法将液体有机物中的杂质除去或将有机物分离。如混在溴乙烷中的乙醇可加入水后分液除去。硝基苯和水的混合物可直接分液分离。  盐析法:利用在有机物中加入某些无机盐时溶解度降低而析出的性质加以分离的方法。如分离肥皂和甘油混合物可加入食盐后使肥皂析出后分离。提纯蛋白质时可加入浓的(NH4)2SO4溶液使蛋白质析出后分离。  2、化学方法:一般是加入或通过某种试剂(例NaOH、盐酸、Na2CO3、NaCl等)进行化学反应,使欲分离、提纯的混合物中的某一些组分被吸收,被洗涤,生成沉淀或气体,或生成与其它物质互不相溶的产物,再用物理方法进一步分离。  (1)洗气法:此法适用于除去气体有机物中的气体杂质。如除去乙烷中的乙烯,应将混合气体通入盛有稀溴水的洗气瓶,使乙烯生成1,2-二溴乙烷留在洗气瓶中除去。不能用通入酸性高锰酸钾溶液中洗气的方法,因为乙烯与酸性高锰酸钾溶液会发生反应生成CO2混入乙烷中。  除去乙烯中的SO2气体可将混合气体通入盛有NaOH溶液的洗气瓶洗气。  (2)转化法:将杂质转化为较高沸点或水溶性强的物质,而达到分离的目的。如除去乙酸乙酯中少量的乙酸,不可用加入乙醇和浓硫酸使之反应而转化为乙酸乙酯的方法,因为该反应可逆,无法将乙酸彻底除去。应加入饱和Na2CO3溶液使乙酸转化为乙酸钠溶液后用分液的方法除去。  溴苯中溶有的溴可加入NaOH溶液使溴转化为盐溶液再分液除去。  乙醇中少量的水可加入新制的生石灰将水转化为Ca(OH)2,再蒸馏可得无水乙醇。混合物的提纯

------高中化学-----关于苯和溴的反应

1、苯,溴,溴苯的密度如何?苯属于烃,密度小于水,即小于1液溴的密度大于水,可以从液溴的保存得到,液溴保存在棕色玻璃瓶中,加少量的水,进行水封,减少溴的挥发,所以,水在液溴的上方,即水的密度小。溴苯的密度大于水。2、苯,溴,溴苯是否溶于水?相互之间的互溶又如何?三者之间是互溶的。苯、溴苯,难溶于水。溴,微溶于水,可以得到溴水,说明溴在水中有一定的溶解度,但是可以用苯萃取溴水中的溴,说明Br2在苯等有机物中的溶解度远大于在水中的溶解度。由于,相似相溶原理,Br2是非极性分子,苯、溴苯也都是非极性的,所以相互溶解,而水是极性的。3、如何分离产物中的溴,苯和溴苯?要除去产物中的Br2,是加入NaOH溶液,利用反应,Br2+2NaOH=NaBr+NaBrO+H2O,将Br变成盐转移到水溶液中,再利用分液漏斗,分液,即得到苯和溴苯的混合物。再对混合物蒸馏,利用它们沸点的不同,分离。4、向反应后容器里倒水会有什么现象?反应后的容器中有剩余的苯和Br2,生成的溴苯,它们是互溶的,且混合物的密度大于水。加水后,分层,上层为水层,有少量的Br2溶解其中,略显黄色,下层是有机层,即苯、溴苯与Br2的混合物,红棕色。

氢氧化钠溶液去除溴苯中的溴,化学方程式是什么?

楼主的意思是什么啊?溴苯中的溴,到底是去除溴原子还是溴单质啊?说清楚点撒NaOH+C6H5-Br=C6H5-OH+NaBr,Br2+2NaOH===NaBr+NaBrO+H2O2个你看着写吧。。。

高二化学有机物 除杂 溴苯(溴) 用mgso4或naso4 原理是什么啊

Br2+2NaOH=NaBr+NaBrO+H2O 溴苯不反应。 可以先分液,然后加固体吸水剂(如无水氯化钙、无水硫酸镁、无水硫酸钠)等吸收里面剩余的少量水,然后过滤,除去吸水剂,最后蒸馏,就行了。

在热化学反应中△H比加大小时,若△H为负,那么比较大小是按照放出的热量多少比较还是按照代数值比较?

若都为负值,则比较绝对值,绝对值大的放热多.一正一负则是负值反应放热大.

鸡蛋清的化学式是什么?

同志,它是混合物,哪来的化学式,就算要写也是一大堆,像各种蛋白质,水 ,无机盐(NaCl等)。。。。。。

化学中物质的颜色,分类:固体液体气体各种的颜色的物质有什麽,用化学式表示

红色Fe(SCN)]2+(血红色);Cu2O(砖红色);Fe2O3(红棕色);红磷(红棕色);液溴(深红棕色);Fe(OH)3(红褐色);I2的CCl4溶液(紫红色);MnO4-(紫红色);Cu(紫红色);在空气中久置的苯酚(粉红色).2.橙色:溴水;K2Cr2O7溶液.3.黄色:AgI(黄色);AgBr(浅黄色);K2CrO4(黄色);Na2O2(淡黄色);S(黄色);FeS2(黄色);久置浓HNO3(溶有NO2);工业浓盐酸(含Fe3+);Fe3+水溶液(黄色);久置的KI溶液(被氧化成I2)4.绿色:Cu2(OH)CO3;Fe2+的水溶液;FeSO4.7H2O;Cl2(黄绿色);F2(淡黄绿色);Cr2O35.蓝色:Cu(OH)2;CuSO4.5H2O;Cu2+的水溶液;I2与淀粉的混合物.6.紫色:KMnO4(紫黑色);I2(紫黑色);石蕊(pH=8--10);Fe3+与苯酚的混合物.7.黑色:FeO,Fe3O4,FeS,CuS,Cu2S,Ag2S,PbS,CuO,MnO2,C粉.8.白色:Fe(OH)2,AgOH,无水CuSO4,Na2O,Na2CO3,NaHCO3,AgCl,BaSO4,CaCO3,CaSO3,Mg(OH)2,Al(OH)3,三溴苯酚,MgO,MgCO3,绝大部分金属等.一、 单质 绝大多数单质:银白色。Cu 紫红 O2 无 Au 黄 S 黄 B 黄或黑 F2 淡黄绿 C(石墨黑 Cl2 黄绿 C(金刚石) 无 Br2 红棕 Si 灰黑 I2 紫黑 H2 无 稀有气体 无 P 白、黄、红棕 。二、氢化物 LiH等金属氢化物:白 NH3等非金属氢化物:无三、氧化物 大多数非金属氧化物:无 主要例外: NO2 棕红 N2O5和P2O5 白 N2O3 暗蓝 ClO2 黄大多数主族金属的氧化物:白 主要例外: Na2O2 浅黄 PbO 黄 K2O 黄 Pb3O4 红 K2O2 橙 Rb2O 亮黄 Rb2O2 棕 Cs2O 橙红 Cs2O2 黄 大多数过渡元素氧化物有颜色 MnO 绿 CuO 黑 MnO2黑 Ag2O 棕黑 FeO 黑 ZnO 白 Fe3O4 黑 Hg2O 黑 Fe2O3 红棕 HgO 红或黄 Cu2O 红 V2O5 橙四、氧化物的水化物 大多数:白色或无色 其中酸:无色为主 碱:白色为主 主要例外: CsOH 亮黄 Fe(OH)3红褐 HNO2 溶液亮蓝 Cu(OH)2 蓝 Hg(OH)2 桔红五、盐 大多数白色或无色 主要例外: K2S 棕黄 CuFeS2 黄 KHS 黄 ZnS 白 Al2S3 黄 Ag2S 黑 MnS 浅红 CdS 黄 FeS 黑棕 SnS 棕 FeS2 黄 Sb2S3 黑或橙红 CoS 黑 HgS 红 NiS 黑 PbS 黑 CuS、Cu2S 黑 Bi2S3 黑 FeCl3·6H2O 棕黄 Na3P 红 FeSO4·9H2O 蓝绿 NaBiO3 黄 Fe2(SO4)3·9H2O 棕黄 MnCl2 粉红 Fe3C 灰 MnSO4 淡红 FeCO3 灰 Ag2CO3 黄 Fe(SCN)3 暗红 Ag3PO4 黄 CuCl2 棕黄 AgF 黄 CuCl2·7H2O 蓝绿 AgCl 白 CuSO4 白 AgBr 浅黄 CuSO4·5H2O 蓝 AgI 黄 Cu2(OH)2CO3 暗绿 盐溶液中离子特色: NO2- 浅黄 Cu2+或[Cu(H2O)4]2+ 蓝 MnO4- 紫红 [CuCl4]2- 黄 MnO42- 绿 [Cu(NH3)4]2+ 深蓝 Cr2O72- 橙红 Fe2+ 浅绿 CrO42- 黄 Fe3+ 棕黄 非金属互化物 PCl3 无 XeF2、XeF4、XeF6 无 PCl5 浅黄 氯水 黄绿 CCl4 无 溴水 黄—橙 CS2 无 碘水黄褐 SiC 无或黑 溴的有机溶液 橙红—红棕 SiF4 无 I2的有机溶液 紫红六.其它 甲基橙 橙 CXHY(烃)、CXHYOZ 无(有些固体白色) 石蕊试液 紫 大多数卤代烃 无(有些固体白色) 石蕊试纸蓝或红 果糖 无 石蕊遇酸 变红 葡萄糖 白 石蕊遇碱 变蓝 蔗糖 无 酚酞 无 麦芽糖 白 酚酞遇碱 红 淀粉 白 蛋白质遇浓HNO3变黄纤维素 白 I2遇淀粉 变蓝 TNT 淡黄 Fe3+遇酚酞溶液 紫焰色反应 Li 紫红 Ca 砖红 Na 黄 Sr 洋红 K 浅紫(通过蓝色钴玻璃) Ba 黄绿 Rb 紫 Cu 绿 稀有气体放电颜色 He 粉红 Ne 鲜红 Ar 紫(一)、固体的颜色 1、红色固体:铜,氧化铁 2、绿色固体:碱式碳酸铜 3、蓝色固体:氢氧化铜,硫酸铜晶体 4、紫黑色固体:高锰酸钾 5、淡黄色固体:硫磺 6、无色固体:冰,干冰,金刚石 7、银白色固体:银,铁,镁,铝,汞等金属 8、黑色固体:铁粉,木炭,氧化铜,二氧化锰,四氧化三铁,(碳黑,活性炭) 9、红褐色固体:氢氧化铁 10、白色固体:氯化钠,碳酸钠,氢氧化钠,氢氧化钙,碳酸钙,氧化钙,硫酸铜,五氧化二磷,氧化镁 (二)、液体的颜色 11、无色液体:水,双氧水 12、蓝色溶液:硫酸铜溶液,氯化铜溶液,硝酸铜溶液 13、浅绿色溶液:硫酸亚铁溶液,氯化亚铁溶液,硝酸亚铁溶液 14、黄色溶液:硫酸铁溶液,氯化铁溶液,硝酸铁溶液 15、紫红色溶液:高锰酸钾溶液 16、紫色溶液:石蕊溶液 (三)、气体的颜色 17、红棕色气体:二氧化氮 18、黄绿色气体:氯气 19、无色气体:氧气,氮气,氢气,二氧化碳,一氧化碳,二氧化硫,氯化氢气体等大多数气体。常用的金属粉有铝粉、锌粉、铅粉,合金形式的金属粉有铜锌粉(俗称金粉)、锌铝粉、不锈钢粉等。 与其他颜料相比较,金属颜料有它的特殊性。由于粉末状的金属颜料以金属或合金组成,故有明亮的金属光泽和颜色。困此,许多金属颜料用做装饰性颜料,如铜锌粉,它的色相从淡金直至赤金,使被涂装的物品绚丽多彩;铝粉色相银白

小分子蛋白多肽的化学式

多肽是α-氨基酸以肽键连接在一起而形成的化合物,是蛋白质水解的中间产物。由两个氨基酸分子脱水缩合而成的化合物叫做二肽,同理类推还有三肽、四肽、五肽等。通常由10~100个氨基酸分子脱水缩合而成的化合物叫多肽。 它们的分子量低于10000Da(Dalton,道尔顿),能透过半透膜,不被三氯乙酸及硫酸铵所沉淀。也有文献把由2~10个氨基酸组成的肽称为寡肽(小分子肽);10~50个氨基酸组成的肽称为多肽;由50个以上的氨基酸组成的肽就称为蛋白质。 多肽的化学式为C55H70O19N10,将其彻底水解后得到下列四种氨基酸: 甘氨酸(C2H5NO2) 丙氨酸(C3H7NO2) 苯丙氨酸(C9H11NO2) 谷氨酸(C5H9NO4)

怎么从化学式中看出有二硫键

您好,您说的是蛋白质计算吧?化学式中看不出蛋白质的二硫键,只能根据硫原子的个数计算。结构简式和示意图中可以看出蛋白质的二硫键,通常表示为—S—S—

有关蛋白质的化学反应

(1)2NH2CH2COOH ===>NH2CH2CONHCH2COOH + H2O(2)nNH2CH2COOH ===>H-[-NHCH2CO-]n-OH + (n-1)H2O(3)H-[-NHCH2CO-]n-OH + (n-1)H2O ===>nNH2CH2COOH OK!

用双缩脲试剂检验蛋白质,生成的紫色物质是什么啊?原理是什么? 最好给出化学式和物质名称

蛋白质只有在双缩脲试剂A的强碱环境下,肽健才能与双缩脲试剂B中的铜离子结合生成紫色络合物.

关于化学式的意义,有几个问题弄不懂,请教一下.!

首先来说单质那些双原子分子的单质(只有六种元素:氮氢氧氟氯溴碘),其化学式能只能用上两条结论:分子式表示一种物质;表示这种物质的分子.那些单原子分子的单质(除了上述六种以外的其他元素都是),其化学式能4条结论都适用;然后来说化合物:所有化合物的分子式都只能表达两种意义:一种物质、该物质的分子或者该物质的一个分子的构成.现在明白了吗?

氮氧钾化学式

氮的化学名称是N;氧的化学名称是O2;钾的化学名称是K。氧元素占整个地壳质量的48.6%,是地壳中含量最多的元素,它在地壳中基本上是以氧化合物的形式存在的。每一千克的海水中溶解有2.8毫克的氧气,而海水中的氧元素差不多达到了89%。就整个地球而言,氧的质量分数为15.2%。无论是人、动物还是植物,他们的细胞都有类似的组成,其中氧元素占到65%的质量。在空气中,氧的体积占20.9%。元素介绍:其原子序数为8,相对原子质量为15.9994。在元素周期表中,氧是氧族元素的一员,它也是一个高反应性的第二周期非金属元素,很容易与几乎所有其他元素形成化合物(主要为氧化物)。在标准状况下,两个氧原子结合形成氧气,是一种无色无臭无味的双原子气体,化学式为O2。如果按质量计算,氧在宇宙中的含量仅次于氢和氦,在地壳中,氧则是含量最丰富的元素。氧不仅占了水质量的89%,也占了空气体积的20.9%。构成有机体的所有主要化合物都含有氧,包括蛋白质、碳水化合物和脂肪。构成动物壳、牙齿及骨骼的主要无机化合物也含有氧。由蓝藻、藻类和植物经过光合作用所产生的氧气化学式为O2,几乎所有复杂生物的细胞呼吸作用都需要用到氧气。动物中,除了极少数之外,皆无法终身脱离氧气生存。

鸡蛋白溶液是什么?化学式,性质等

是胶体,性质主要是能发生丁达尔现象和在一定条件下(如加热等)能够凝聚,没有统一化学式。

蛋白质燃烧的化学方程式

蛋白质燃烧是物理反应,不是化学反应他因为没有因的物质生成,所以也就没有所谓的化学方程式。蛋白质是具有特定构象的大分子,为研究方便,将蛋白质结构分为四个结构水平,包括一级结构、二级结构、三级结构和四级结构。一般将二级结构、三级结构和四级结构称为三维构象或高级结构。一级结构指蛋白质多肽链中氨基酸的排列顺序。肽键是蛋白质中氨基酸之间的主要连接方式,即由一个氨基酸的α-氨基和另一个氨基酸的α-之间脱去一分子水相互连接。肽键具有部分双键的性质,所以整个肽单位是一个刚性的平面结构。在多肽链的含有游离氨基的一端称为肽链的氨基端或N端,而另一端含有一个游离羧基的一端称为肽链的羧基端或C端。蛋白质的二级结构是指多肽链骨架盘绕折叠所形成的有规律性的结构。最基本的二级结构类型有α-螺旋结构和β-折叠结构,此外还有β-转角和自由回转。右手α-螺旋结构是在纤维蛋白和球蛋白中发现的最常见的二级结构,每圈螺旋含有3.6个氨基酸残基,螺距为0.54nm,螺旋中的每个肽键均参与氢键的形成以维持螺旋的稳定。β-折叠结构也是一种常见的二级结构,在此结构中,多肽链以较伸展的曲折形式存在,肽链(或肽段)的排列可以有平行和反平行两种方式。氨基酸之间的轴心距为0.35nm,相邻肽链之间借助氢键彼此连成片层结构。结构域是介于二级结构和三级结构之间的一种结构层次,是指蛋白质亚基结构中明显分开的紧密球状结构区域。超二级结构是指蛋白质分子 中的多肽链在三维折叠中形成有规则的三级结构聚集体。蛋白质的三级结构是整个多肽链的三维构象,它是在二级结构的基础上,多肽链进一步折叠卷曲形成复杂的球状分子结构。具有三级结构的蛋白质一般都是球蛋白,这类蛋白质的多肽链在三维空间中沿多个方向进行盘绕折叠,形成十分紧密的近似球形的结构,分子内部的空间只能容纳少数水分子,几乎所有的极性R基都分布在分子外表面,形成亲水的分子外壳,而非极性的基团则被埋在分子内部,不与水接触。蛋白质分子中侧链R基团的相互作用对稳定球状蛋白质的三级结构起着重要作用。蛋白质的四级结构指数条具有独立的三级结构的多肽链通过非共价键相互连接而成的聚合体结构。在具有四级结构的蛋白质中,每一条具有三级结构的皑链称为亚基或亚单位,缺少一个亚基或亚基单独存在都不具有活性。四级结构涉及亚基在整个分子中的空间排布以及亚基之间的相互关系。维持蛋白质空间结构的作用力主要是氢键、离子键、疏水作用力和范德华力等非共价键,又称次级键。此外,在某些蛋白质中还有二硫键,二硫键在维持蛋白质构象方面也起着重要作用。蛋白质的空间结构取决于它的一级结构,多肽离岸主链上的氨基酸排列顺序包含了形成复杂的三维结构(即正确的空间结构)所需要的全部信息。(四)蛋白质结构与功能的关系不同的蛋白质,由于结构不同而具有不同的生物学功能。蛋白质的生物学功能是蛋白质分子的天然构象所具有的性质,功能与结构密切相关。1.一级结构与功能的关系蛋白质的一级结构与蛋白质功能有相适应性和统一性,可从以下几个方面说明:(1)一级结构的变异与分子病蛋白质中的氨基酸序列与生物功能密切相关,一级结构的变化往往导致蛋白质生物功能的变化。如镰刀型细胞贫血症,其病因是血红蛋白基因中的一个核苷酸的突变导致该蛋白分子中β-链第6位谷氨酸被缬氨酸取代。这个一级结构上的细微差别使患者的血红蛋白分子容易发生凝聚,导致红细胞变成镰刀状,容易破裂引起贫血,即血红蛋白的功能发生了变化。(2)一级结构与生物进化研究发现,同源蛋白质中有许多位置的氨基酸是相同的,而其它氨基酸差异较大。如比较不同生物的细胞色素C的一级结构,发现与人类亲缘关系接近,其氨基酸组成的差异越小,亲缘关系越远差异越大。(3)蛋白质的激活作用在生物体内,有些蛋白质常以前体的形式合成,只有按一 定方式裂解除去部分肽链之后才具有生物活性,如酶原的激活。2.蛋白质空间结构与功能的关系蛋白质的空间结构与功能之间有密切相关性,其特定的空间结构是行使生物功能的基础。以下两方面均可说明这种相关性。(1).核糖核酸酶的变性与复性及其功能的丧失与恢复核糖核酸酶是由124个氨基酸组成的一条多肽链,含有四对二硫键,空间构象为球状分子。将天然核糖核酸酶在8mol/L脲中用β-巯基乙醇处理,则分子内的四对二硫键断裂,分子变成一条松散的肽链,此时酶活性完全丧失。但用透析法除去β-巯基乙醇和脲后,此酶经氧化又自发地折叠成原有的天然构象,同时酶活性又恢复。(2)血红蛋白的变构现象血红蛋白是一个四聚体蛋白质,具有氧合功能,可在血液中运输氧。研究发现,脱氧血红蛋白与氧的亲和力很低,不易与氧结合。一旦血红蛋白分子中的一个亚基与O2结合,就会引起该亚基构象发生改变,并引起其它三个亚基的构象相继发生变化,使它们易于和氧结合,说明变化后的构象最适合与氧结合。从以上例子可以看出,只有当蛋白质以特定的适当空间构象存在时才具有生物活性。(五)蛋白质的重要性质蛋白质是两性电解质,它的酸碱性质取决于肽链上的可解离的R基团。不同蛋白质所含有的氨基酸的种类、数目不同,所以具有不同的等电点。当蛋白质所处环境的pH大于pI时,蛋白质分子带负电荷,pH小于pI时,蛋白质带正电荷,pH等于pI时,蛋白质所带净电荷为零,此时溶解度最小。蛋白质分子表面带有许多亲水基团,使蛋白质成为亲水的胶体溶液。蛋白质颗粒周围的水化膜(水化层)以及非等电状态时蛋白质颗粒所带的同性电荷的互相排斥是使蛋白质胶体系统稳定的主要因素。当这些稳定因素被破坏时,蛋白质会产生沉淀。高浓度中性盐可使蛋白质分子脱水并中和其所带电荷,从而降低蛋白质的溶解度并沉淀析出,即盐析。但这种作用并不引起蛋白质的变性。这个性质可用于蛋白质的分离。蛋白质受到某些物理或化学因素作用时,引起生物活性的丧失,溶解度的降低以及其它性质的改变,这种现象称为蛋白质的变性作用。变性作用的实质是由于维持蛋白质高级结构的次级键遭到破坏而造成天然构象的解体,但未涉及共价键的断裂。有些变性是可逆的,有些变性是不可逆的。当变性条件不剧烈时,变性是可逆的,除去变性因素后,变性蛋白又可从新回复到原有的天然构象,恢复或部分恢复其原有的生物活性,这种现象称为蛋白质的复性。

CS(NH2)2这个化学式的中文名称是什么?

中文名称 硫脲 英文名称 Thiourea;Thiocarbamide 别 名 硫代尿素

胺的化学式

胺,外文名Amines,化学式RNH2;RNHR";RN(R")R""按照氢被取代的数目,依次分为一级胺(伯胺)RNH2、二级胺(仲胺)R2NH、三级胺(叔胺)R3N、四级铵盐(季铵盐)R4N+X-,例如甲胺CH3NH2、苯胺C6H5NH2、乙二胺H2NCH2CH2NH2、二异丙胺[(CH3)2CH]2NH、三乙醇胺(HOCH2CH2)3N、溴化四丁基铵(CH3CH2CH2CH2)4N+Br-。氢氧化铵或铵盐的四羟基取代物,称为季胺碱(quaternary ammonium hydroxide)或季铵盐(quaternary ammonium salt)。 NH4+铵 R4NOH季铵碱 R4NX季铵盐。胺是指氨分子中的一个或多个氢原子被烃基取代后的产物,根据胺分子中氢原子被取代的数目,可将胺分成伯胺、仲胺、叔胺;胺类广泛存在于生物界,具有极重要的生理活性和生物活性,如蛋白质、核酸、许多激素、抗生素和生物碱等都是胺的衍生物,临床上使用的大多数药物也是胺或者胺的衍生物,因此掌握胺的性质和合成方法是研究这些复杂天然产物及更好地维护人类健康的基础。

维生素的化学式

维生素A的化学式是C20H30O维生素C的化学式是C6H8O6维生素D2的化学式是C28H440维生素D3的化学式是C27H440维生素B1的化学式是C12H17ClN4OS维生素B2又称核黄素,是水溶性维生素,化学式为C17H20N4O6,维生素B6是一种水溶性维生素,化学式为C8H11NO3维生素eC27H44O2R1R2根据R1&R2的不同分成四类维生素k一共是四种

高中有机物常用化学式

甲烷:CH4乙烷:C2H6丙烷:C3H8n烷:CnH2n+2苯:C6H6----------------------------乙烯:C2H4乙炔:C2H2丙烯:C3H6----------------------------甲醇:CH3OH乙醇:C2H5OH丙醇:C3H7OH丙三醇(甘油):C3H8O3苯酚:C6H5OH----------------------------甲酸:HCOOH乙酸:CH3COOH乙酸乙酯:CH3COOC2H5苯甲酸:C6H5COOH----------------------------甲醛:HCHO乙醛:CH3CHO----------------------------一氯甲烷:CH3Cl二氯甲烷:CH2Cl2三氯甲烷(氯仿):CHCl4四氯化碳:CCl4----------------------------葡萄糖(果糖):C6H12O6乳糖蔗糖:C12H22O11纤维素(淀粉):(C6H10O5)n

蛋白质在人体胃肠内与水反应,最终生成氨基酸被人体吸收。丙氨酸(化学式为C2H2O2N)是其中的一种

2/0.16=12.5<18 所以不合格,望采纳。

高中生物有哪些缓冲对(写出化学式),作用原理是什么?谢谢!

缓冲物质包括NaHCO3/H2CO3、蛋白质钠盐/蛋白质和Na2HPO4/NaH2PO4三个主要的缓冲对,其中以NaHCO3/H2CO3最为重要.此外,红细胞内还有血红蛋白钾盐/血红蛋白、氧合血红蛋白钾盐/氧合血红蛋白、K2HPO4/KH2PO4、KHCO3/H2CO3等缓冲对参与维持血浆PH值的恒定.这些缓冲对有以下特点:①组成:共轭碱/弱酸,既可缓冲酸,可缓冲碱,防止H+ 发生较大变动,维持pH的稳定;②血液中主要的缓冲对:HCO3-/H2CO3,因为含量大,占一半以上(53%),同时具有开放性(可缓冲固定酸或碱,生成CO2或HCO3-从肺或肾排出).也可缓冲强碱生成弱酸盐和水,如NaOH+ H2CO3→NaHCO3+ H2O所以说:体内最重要的缓冲对是HCO3-/H2CO3(细胞外,以它为主),而细胞内则是以血红蛋白缓冲对为主(HHb及HHbO2).

血液的化学式

呃……很长很烦,你要的话我也可以列一些出来,一般也就是水的,糖的,各种离子的,脂质的(很长哦),蛋白质(有血红蛋白啊,糖蛋白啊……总之很多很烦很长很好很强大),还有尿素一类的废物,反正你要知道血液是混合物,而且有机物很多,估计列两天都列不完的,再给你说个数据哦,别吓着血浆中是有激素,有大量细胞(红的白的还有叫血小板的,白的有几种,还有一些乱七八糟的东西),一个细胞的细胞膜就有……(糖蛋白,运输蛋白,通道蛋白,磷脂双分子层,呃……很多的,高中生物有教的)每个蛋白运输的时候有酶参与,而酶又是几百种,在牵扯到你吃得营养物质也在血液中,光一个糖就有五碳的,六碳的,淀粉糖原单糖双糖多糖,氨基酸更是数不清的乱,里面的线粒体啊,叶绿体啊,过氧物酶体啊,核糖体啊,都是很复杂的……怎么样,懵了吧……等你到了高一,学习细胞器,酶,膜,营养物质,泌尿系统,激素,血液的时候,你就可以列出来了,像我这样对生物很有兴趣的人都不高兴列的,几百个几千个……超复杂,超恶心……我以前看到一整张纸的化学反应,绕来绕去像蜘蛛网一样的,还说只是细胞内反应的一个缩影……(要知道,每个反应最少代表了两个不同的物质,自己也可以估计了吧)

初中化学中鸡蛋清加水,加重金属盐,加甲醛还有其他物质的反应化学式和解释

初中的?不对啊,这个是高中的。1.加水,无明显反应;2.加重金属盐,会发生变性,产生沉淀。有人中毒后喝鸡蛋清就是这个道理。蛋白质还有一个反应是盐析反应,要把它们分开。3.甲醛与鸡蛋清发生变性作用,会产生块状物,豆腐就是这么来的。但是一般来说,我们不用甲醛来检验蛋白质。因为在通常情况下,甲醛是气态的,他不会 与蛋白质发生什么明显反应,在理论上来说甲醛是可以让蛋白质产生变性作用的。

天冬氨酸化学式

天冬氨酸化学式:HOOCCH2CH(NH2)COOH天冬氨酸介绍如下:天门冬氨酸,又称天冬氨酸,是一种α-氨基酸,天门冬氨酸的左旋异构物是20种蛋白氨基酸之一,即为蛋白质的构造单位,它的密码子是GAU和GAC。它与谷氨酸同为酸性氨基酸。它属于人体内非必需氨基酸的一种。天冬氨酸普遍存在于生物合成作用中。它是生物体内赖氨酸、苏氨酸、异亮氨酸、蛋氨酸等氨基酸及嘌呤、嘧啶碱基的合成前体。它可作为K+、Mg2+离子的载体向心肌输送电解质,从而改善心肌收缩功能。同时降低氧消耗,在冠状动脉循环障碍缺氧时,对心肌有保护作用。它参与鸟氨酸循环,促进氨和二氧化碳生成尿素,降低血液中氮和二氧化碳的量,增强肝脏功能,消除疲劳。天冬氨酸的基本信息介绍如下:天门冬氨酸,其左旋型是构成蛋白质的20种基本氨基酸之一,其在生化试剂和临床医学方面具有广泛的应用。它的化学名称为氨基丁二酸。天冬氨酸的化学性质介绍如下:作为一类化学物质,天冬氨酸的通式决定了它们具有一些共有的基本性质。首先,天冬氨酸是小分子物质,分子量没有超过1000。另外,天冬氨酸熔点在230℃以上,没有确切的熔点,熔融时分解并放出CO2;都能溶于强酸和强碱溶液中。常温下,天冬氨酸微溶于水,难溶于乙醇和乙醚,溶于沸水。能与酸结合成盐,也能与碱结合成盐。从天冬氨酸的结构可以看出,由于天冬氨酸的分子中有不对称的碳原子,所以具有旋光性。同时由于空间的排列位置不同,组成蛋白质的天冬氨酸,属L型。

光合作用的化学式

光合作用: CO2+2H2O (CH2O)+O2+H2O呼吸作用:有机物+氧→水+二氧化碳+能量有氧呼吸(需酶催化) C6H12O6+6H2O+6O2——→6CO2+12H2O+能量(大多数生物) 无氧呼吸(需酶催化) C6H12O6——→2C2H5OH+2CO2+能量(多数高等植物无氧呼吸的方式,酵母菌等) 无氧呼吸(需酶催化) C6H12O6——→2C3H6O3+能量(动物、乳酸菌,马铃薯的块茎、甜菜的块根、玉米的胚等光合作用机理(一)光反应 ( 在光合膜上进行 ) 1. 光能 → 电能 → 活跃的化学能 → 稳定的化学能 2. 量子 → 电子 →ATP 、 NDAPH2→ 碳水化合物等 3. 原初反应 → 电子传递 → 光合磷酸化 → 碳同化项 目相同点不同点光合磷酸化氧化磷酸化进行部位均在膜上进行类襄体膜线粒体内膜ATP 形成均经 ATP 合成酶形成在膜外侧在膜内侧电子传递均有一系列电子传递体在光合链上在呼吸链上能量状况均有能量转换来自光能的激发,贮藏能量来自底物的分解,释放能量H2O 的关系均与 H2O 有关H2O 的光解H2O 的生成质子泵均有质子泵产生PQ 穿梭将 H+ 泵到膜内UQ 穿梭将 H+ 泵到膜外(二)暗反应 ( 在间质中进行 ) 1.C3 循环 ( 光合碳循环,卡尔文循环 ) :在所有植物中进行。如:水稻、小麦、棉花等大多数植物为 C3 植物,只有该途径。 Rubisco (1) 羧化阶段: RuBP+CO2 2PGA (2) 还原阶段 (3) 再生阶段 2.C4 循环 (C4 一二羧酸途径 ) :在 C4 植物中进行。如玉米、高梁、甘蔗等植物。 PEPC (1) 羧化阶段: PEP+CO2 OAA (2) 还原或转氨阶段 (3) 脱羧阶段 ( 从叶肉细胞转移到维管束鞘细胞,然后脱去 CO2 ,参加卡尔文循环 ) (4) 再生阶段 3.CAM( 景天酸代谢 ) 途径:在仙人掌科,凤梨科等植物中进行。 (1) 夜间固定 CO2 ,产生苹果酸,贮藏于液泡中。 (2) 白天有机酸脱羧,参加卡尔文循环。(三)C3 植物、 C4 植物和 CAM 植物光合、生理特性比较 光呼吸光呼吸是指绿色细胞在光下吸收 O2 与释放 CO2 的过程。暗呼吸与光呼吸的区别:项 目暗呼吸 光呼吸对光的要求光下,黑暗下均可进行 只在光下与光合作用同时进行底 物糖、脂肪、蛋白质、有机酸 乙醇酸进行部位活细胞的细胞质 → 线粒体 叶绿体 → 过氧化物体 → 线粒体呼吸历程糖酵解 → 三羧酸循环 → 呼吸链 → 未端氧化 乙醇酸循环 (C2 循环 )能量状况产生能量 消耗能量生理意义生命的标志;提供代谢所需能量;物质代谢的中心;对伤、病的抗性 平衡同化力的需求关系;防止高光强下对光合作用破坏的保护性反应;防止氧对光合碳同化的抑制作用;是磷酸丙糖的补充途径;氨基酸合成的补充途径;解除乙醇酸积累的毒害作用。

初三化学

A:ph越少,酸度越大,石蕊检验酸的,无色酚酞检验碱的C:食醋溶于水有游离的H+,可以与水垢主要成分为碳酸氢钙反应

核酸的化学结构式是什么?

这个问题没有直接的答案。蛋白质和核酸都是生物大分子,并没有一个统一的化学式。 首先说核酸,就目前而言,核酸一共有两大类:脱氧核糖核酸(DNA)和核糖核酸(RNA)。核酸由多个(很多个)核苷酸组成。核苷酸的结构分为三部分:一分子五碳糖--核糖(有脱氧核糖和核糖两种)、一分子磷酸、一分子含氮碱基(有两种嘌呤--腺嘌呤和鸟嘌呤,三种嘧啶--胞嘧啶、胸腺嘧啶和尿嘧啶)。根据含氮碱基的不同,核苷酸有如下几类: 组成DNA: 腺嘌呤脱氧核糖核苷酸--可以简称脱氧腺苷酸 鸟嘌呤脱氧核糖核苷酸--可以简称脱氧鸟苷酸 胞嘧啶脱氧核糖核苷酸--可以简称脱氧胞苷酸 胸腺嘧啶脱氧核糖核苷酸--可以简称脱氧胸苷酸 组成RNA: 腺嘌呤核糖核苷酸--可以简称核糖腺苷酸 鸟嘌呤核糖核苷酸--可以简称核糖鸟苷酸 胞嘧啶核糖核苷酸--可以简称核糖胞苷酸 尿嘧啶核糖核苷酸--可以简称核糖尿苷酸 注意:没有尿嘧啶脱氧核糖核苷酸,也没有胸腺嘧啶核糖核苷酸。 每一类核酸由四种核苷酸组成,形成的核酸种类极多,因此,没有统一的化学式。 再说蛋白质, 蛋白质由氨基酸组成,组成蛋白质的氨基酸约有20种(这个数字我不太肯定,但有一点,并不是所有的氨基酸都参与组成蛋白质,至少现在研究表明,只有一些种类的α氨基酸才是蛋白质的组分),因此蛋白质种类因该说是趋于无穷的。 另外,一个完整的蛋白质有四级结构(个别蛋白质结构少于四级),氨基酸排列顺序只是一级结构,氨基酸长链还需经过折叠、螺旋等空间构象后才能成为有功能的蛋白质。从这一点再考虑,蛋白质的种类就更多,根本就不是一个化学式或是结构是所能概括的。 事实上,关于蛋白质和核酸结构的研究也可以算当今生物领域的一个研究热点,许多研究人员都在致力于测定各种蛋白质或核酸的结构,不断有报道说某种蛋白或核酸的结构被测定出来了,但是蛋白质和核酸的种类极多,这项工作远没有结束。

求6套高二有机化学试题及答案

请问下头发的化学公式是什么?

形成头发主要成分的蛋白质,是胱安酸中含有量多的角蛋白。角蛋白由约18种氨基酸组成。其组成成分在表Ⅳ-3中,对比羊毛角蛋白与人类表皮对比 表示。如表Ⅳ-3所示,头发角蛋白的氨基酸组成特征是,胱安酸含有量多,不仅多于人类表皮,还多于羊毛角蛋白约40~50%。然后是,碱性氨基酸-组氨 酸、赖氨酸、精氨酸的比率为1:3:10,该比率是头发角蛋白所特殊的。人类的头发由于多种原因会出现构成比例差,根据Robbins,胱安酸男性更多, 根据饮食习惯,会有精氨酸、蛋氨酸差异引起的不同。蛋白质是高分子化合物没有固定的化学式,可以与氢氧化钠水解及硝酸变性头发还有重金属元素所以有头发制成的酱油是有害的就是这个原因和头发接近的是皮肤趾甲及羽毛等高分子蛋白质制品

有机物的化学式

1、烷烃,通式CnH2n+2,如甲烷CH4。2、烯烃和环烷烃,通式CnH2n,如乙烯C2H4。3、炔烃,通式CnH2n-2,如丙炔C3H4。4、醇和醚,通式CnH2n+2O,如乙醇C2H6O。5、酮和醛,通式CnH2nO,乙醛,C2H4O。有机物是生命产生的物质基础,所有的生命体都含有机化合物,如脂肪、氨基酸、蛋白质、糖、血红素、叶绿素、酶、激素等。扩展资料生物体内的新陈代谢和生物的遗传现象,都涉及到有机化合物的转变。此外,许多与人类生活有密切相关的物质,如石油、天然气、棉花、染料、化纤、塑料、有机玻璃、天然和合成药物等,均与有机化合物有着密切联系。“有机物”原意是来自生物体的物质,因为早期发现的有机物都是从生物体内分离出来的。随着有机合成的发展,许多有机物在实验室可由无机物合成得到。“有机物”这一词已失去了原来的含义。

蛋白质是由多种氨基酸(如丙氨酸、甘氨酸等)构成的极为复杂的化合物,其中丙氨酸的结构简式为: 化学式

由丙氨酸的结构简式可知,一个丙氨酸分子由3个碳原子、7个氢原子、2个氧原子和一个氮原子构成,故可判断其化学式为:C 3 H 7 O 2 N.(1)丙氨酸的相对分子质量=12×3+7+16×2+14=89;(2)丙氨酸中C、H、O、N元素间的质量比为:(12×3):7:(16×2):14=36:7:32:14;(3)在17.8g丙氨酸中,含有氮元素的质量是:17.8g× 14 89 =2.8g.故答案为:C 3 H 7 O 2 N;(1)89;(2)36:7:32:14;(3)2.8g.

求糖类脂肪蛋白质维生素微量元素定义式分子式结构式结构简式物理性质化学性质

一.糖类构成:主要由碳、氢、氧三种元素构成。  糖类化合物包括单糖、单糖的聚合物及衍生物。  单糖分子都是带有多个羟基的醛类或者酮类。  糖类化合物化学概念:单糖是多羟醛或多羟酮及他们的环状半缩醛或衍生物。多糖则是单糖缩合的多聚物。  分子通式:Cm(H2O)n  然而,符合这一通式的不一定都是糖类,是糖类也不一定都符合这一通式。  这只是表示大多数糖的通式。  碳水化合物只是糖类的大多数形式。我们把糖类狭义的理解为碳水化合物。   单糖   丙糖 例如:甘油醛  戊糖,五碳糖 例如: 核糖,脱氧核糖  己糖 例如: 葡萄糖,果糖(化学式都是C6H12O6 )  二糖  蔗糖、麦芽糖和乳糖  他们化学式都是(C6H12O6)2  多糖  淀粉、纤维素和糖原  他们化学式是(C6H10O5)n具体讲解   分类:单糖、二糖、低聚糖(寡糖)、多糖、复合糖五种。  糖类化合物的生物学作用主要是:  1 作为生物能源  2 作为其他物质生物合成的碳源  3 作为生物体的结构物质  4 糖蛋白、糖脂等具有细胞识别、免疫活性等多种生理活性功能。  单糖-糖类种结构最简单的一类,单糖分子含有许多亲水基团,易溶于水,不溶于乙醚、丙酮等有机溶剂,简单的单糖一般是含有3-7个碳原子的多羟基醛或多羟基酮,其组成元素是C,H,O葡萄糖、果糖、半乳糖等。 葡萄糖是生命活动的主要能源物质,核糖是RNA的组成物质,脱氧核糖是DNA的组成物质。葡萄糖、果糖的分子式都是:C6H12O6。他们是同分异构体。  低聚糖(寡糖)-由2-10个单糖分子聚合而成。水解后可生成单糖。  二糖-二糖是由两分子单糖脱水而成的糖苷,苷元是另一分子的单糖。二糖水解后生成两分子的单糖。如乳糖、蔗糖、麦芽糖 。蔗糖和麦芽糖是能水解成单糖供能。它们的分子式都是:C12H22O11。也属于同分异构体。  三糖-水解后生成三分子的单糖。如棉子糖 。定粉是储蓄物质,纤维素是组成细胞壁,糖元是储能物质。  四糖   五糖   多聚糖-由10个以上单糖分子聚合而成。经水解后可生成多个单糖或低聚糖。根据水解后生成单糖的组成是否相同,可以分为:   同聚多糖-同聚多糖由一种单糖组成,水解后生成同种单糖。如阿拉伯胶、糖元、淀粉、纤维素等。 淀粉和纤维素的表达式都是(C6H10O5)n。但他们不是同分异构体,因为他们的n数量不同。其中淀粉n<纤维素n。  杂聚多糖-杂聚多糖由多种单糖组成,水解后生成不同种类的单糖。如粘多糖、半纤维素等。   复合糖(complex carbohydrate,glycoconjugate).糖类的还原端和蛋白质或脂质结合的产物。 几种糖的相对甜度:   果糖 175 (最甜的糖)  蔗糖 100  葡萄糖 74  麦芽糖 32各种糖化学性质:葡萄糖的醛基比较活泼,会发生半缩醛反应,形成半缩醛羟基并成一个吡啶环。这样分子构象能量较低,因此写成环状更科学、更合理。 另外,葡萄糖也可能在半缩醛反应时形成呋喃环,但是这种比例较低,在2%以下。 葡萄糖成环也并不是平面的,往往形成船形或椅型构象,这样更稳定。 半乳糖是葡萄糖的异构体,常见的D-半乳糖是D-葡萄糖的C4异构体。也就是说他们在4号碳上的羟基位置有所不同。 果糖中不含醛基,而是在二号碳上含有一个羰基,因此往往形成五元的呋喃环二。脂肪脂肪的概念:  脂类是油、脂肪、类脂的总称。食物中的油脂主要是油和脂肪,一般把常温下是液体的 称作油,而把常温下是固体的称作脂肪。脂肪所含的化学元素主要是C、H、O,部分还含有N,P等元素。   脂肪是由甘油和脂肪酸组成的三酰甘油酯,其中甘油的分子比较简单,而脂肪酸的种类和长短却不相同。因此脂肪的性质和特点主要取决于脂肪酸,不同食物中的脂肪所含有的脂肪酸种类和含量不一样。自然界有40多种脂肪酸,因此可形成多种脂肪酸甘油三酯。脂肪酸一般由4个到24个碳原子组成。脂肪酸分三大类:饱和脂肪酸、单不饱和脂肪酸、多不饱和脂肪酸。   脂肪在多数有机溶剂中溶解,但不溶解于水。 [编辑本段]脂类的分类  脂肪是甘油和三分子脂肪酸合成的甘油三酯。  (1)中性脂肪:即甘油三脂,是猪油,花生油,豆油,菜油,芝麻油的主要成分  (2)类脂包括磷脂:卵磷脂、脑磷脂、肌醇磷脂。   糖脂:脑苷脂类、神经节昔脂。   脂蛋白:乳糜微粒、极低密度脂蛋白、低密度脂蛋白、高密度脂蛋白。   类固醇:胆固醇、麦角因醇、皮质甾醇、胆酸、维生素D、雄激素、雌激素、孕激素。   在自然界中,最丰富的是混合的甘油三酯,在食物中占脂肪的98%,在身体中占如28%以上。所有的细胞都含有磷脂,它是细胞膜和血液中的结构物,在脑、神经、肝中含量特别高,卵磷脂是膳食和体内最丰富的磷脂之一。四种脂蛋白是血液中脂类的主要运输工具。 [编辑本段]脂肪的生物功能  脂类是指一类在化学组成和结构上有很大差异,但都有一个共同特性,即不溶于水而易溶于乙醚、氯仿等非极性溶剂中的物质。通常脂类可按不同组成分为五类,即单纯脂、复合脂、萜类和类固醇及其衍生物、衍生脂类及结合脂类。  脂类物质具有重要的生物功能。脂肪是生物体的能量提供者。  脂肪也是组成生物体的重要成分,如磷脂是构成生物膜的重要组分,油脂是机体代谢所需燃料的贮存和运输形式。脂类物质也可为动物机体提供溶解于其中的必需脂肪酸和脂溶性维生素。某些萜类及类固醇类物质如维生素A、D、E、K、胆酸及固醇类激素具有营养、代谢及调节功能。有机体表面的脂类物质有防止机械损伤与防止热量散发等保护作用。脂类作为细胞的表面物质,与细胞识别,种特异性和组织免疫等有密切关系。  概括起来,脂肪有以下几方面生理功能:  1. 生物体内储存能量的物质并供给能量 1克脂肪在体内分解成二氧化碳和水并产生38KJ(9Kcal)能量,比1克蛋白质或1克碳水化合物高一倍多。  2. 构成一些重要生理物质,脂肪是生命的物质基础 是人体内的三大组成部分(蛋白质、脂肪、碳水化合物)之一。 磷脂、糖脂和胆固醇构成细胞膜的类脂层,胆固醇又是合成胆汁酸、维生素D3和类固醇激素的原料。  3. 维持体温和保护内脏、缓冲外界压力 皮下脂肪可防止体温过多向外散失,减少身体热量散失, 维持体温恒定。也可阻止外界热能传导到体内,有维持正常体温的作用。内脏器官周围的脂肪垫有缓冲外力冲击保护内脏的作用。减少内部器官之间的摩擦 。  4. 提供必需脂肪酸。  5. 脂溶性维生素的重要来源 鱼肝油和奶油富含维生素A、D,许多植物油富含维生素E。脂肪还能促进这些脂溶性维生素的吸收。  6.增加饱腹感 脂肪在胃肠道内停留时间长,所以有增加饱腹感的作用。 脂肪的生物降解:  在脂肪酶的作用下,脂肪水解成甘油和脂肪酸。甘油经磷酸化和脱氢反应,转变成磷酸二羟丙酮,纳入糖代谢途径。脂肪酸与ATP和CoA在脂酰CoA合成酶的作用下,生成脂酰CoA。脂酰CoA在线粒体内膜上肉毒碱:脂酰CoA转移酶系统的帮助下进入线粒体衬质,经β-氧化降解成乙酰CoA,在进入三羧酸循环彻底氧化。β-氧化过程包括脱氢、水合、再脱氢和硫解四个步骤,每次β-氧化循环生成FADH2、NADH、乙酰CoA和比原先少两个碳原子的脂酰CoA。此外,某些组织细胞中还存在α-氧化生成α羟脂肪酸或CO2和少一个碳原子的脂肪酸;经ω-氧化生成相应的二羧酸。  萌发的油料种子和某些微生物拥有乙醛酸循环途径。可利用脂肪酸β-氧化生成的乙酰CoA合成苹果酸,为糖异生和其它生物合成提供碳源。乙醛酸循环的两个关键酶是异柠檬酸裂解酶和苹果酸合成酶前者催化异柠檬酸裂解成琥珀酸和乙醛酸,后者催化乙醛酸与乙酰CoA生成苹果酸。 [脂肪的生物合成:   脂肪的生物合成包括三个方面:饱和脂肪酸的从头合成,脂肪酸碳链的延长和不饱和脂肪酸的生成。脂肪酸从头合成的场所是细胞液,需要CO2和柠檬酸的参与,C2供体是糖代谢产生的乙酰CoA。反应有二个酶系参与,分别是乙酰CoA羧化酶系和脂肪酸合成酶系。首先,乙酰CoA在乙酰CoA羧化酶催化下生成,然后在脂肪酸合成酶系的催化下,以ACP作酰基载体,乙酰CoA为C2受体,丙二酸单酰CoA为C2供体,经过缩合、还原、脱水、再还原几个反应步骤,先生成含4个碳原子的丁酰ACP,每次延伸循环消耗一分子丙二酸单酰CoA、两分子NADPH,直至生成软脂酰ACP。产物再活化成软脂酰CoA,参与脂肪合成或在微粒体系统或线粒体系统延长成C18、C20和少量碳链更长的脂肪酸。在真核细胞内,饱和脂肪酸在O2的参与和专一的去饱和酶系统催化下,进一步生成各种不饱和脂肪酸。高等动物不能合成亚油酸、亚麻酸、花生四烯酸,必须依赖食物供给。  3-磷酸甘油与两分子脂酰CoA在磷酸甘油转酰酶作用下生成磷脂酸,在经磷酸酶催化变成二酰甘油,最后经二酰甘油转酰酶催化生成脂肪。化学及物理性质:分子量:CAS号:性质:羧基与脂烃基相连的酸。根据脂烃基的不同,可以分为(1)饱和脂肪酸(saturated aliphatic acid),含有饱和烃基的酸。例如甲酸HCOOH、乙酸CH3COOH、硬脂酸CH3(CH2)16COOH、软脂酸CH3(CH2)14COOH。(2)不饱和脂肪酸(unsaturated aliphatic acid),含有不饱和烃基的酸。例如丙烯酸CH2=CHCOOH,油酸CH3(CH2)7CH=CH(CH2)7COOH。(3)环酸 (alicyclic carboxylic acid),羧基与环烃基连接。例如环乙烷羧酸C6H11COOH。许多种脂肪酸的甘油三酯是油和脂肪的主要成分,因而可以从油和脂肪经水解制得。也可用人工合成。低碳数的是无色液体,有刺激气味,易溶于水。中碳数的是油状液体,微溶于水,有汗的气味。高碳数的是固体,不溶于水。脂肪酸能与碱作用而成盐、与醇作用而成酯。用于制肥皂、合成洗涤剂、润滑剂和化妆品等。 三。维生素维生素又名维他命,是维持人体生命活动必需的一类有机物质,也是保持人体健康的重要活性物质。维生素在体内的含量很少,但在人体生长、代谢、发育过程中却发挥着重要的作用。各种维生素的化学结构以及性质虽然不同,但它们却有着以下共同点:①维生素均以维生素原(维生素前体)的形式存在于食物中②维生素不是构成机体组织和细胞的组成成分,它也不会产生能量,它的作用主要是参与机体代谢的调节③大多数的维生素,机体不能合成或合成量不足,不能满足机体的需要,必须经常通过食物中获得④人体对维生素的需要量很小,日需要量常以毫克(mg)或微克(μg)计算,但一旦缺乏就会引发相应的维生素缺乏症,对人体健康造成损害。维生素与碳水化合物、脂肪和蛋白质3大物质不同,在天然食物中仅占极少比例,但又为人体所必需。有些维生素如 B6、K等能由动物肠道内的细菌合成,合成量可满足动物的需要。动物细胞可将色氨酸转变成烟酸(一种B族维生素),但生成量不敷需要;维生素C除灵长类(包括人类)及豚鼠以外,其他动物都可以自身合成。植物和多数微生物都能自己合成维生素,不必由体外供给。许多维生素是辅基或辅酶的组成部分。  人和动物营养、生长所必需的某些少量有机化合物,对机体的新陈代谢、生长、发育、健康有极重要作用。如果长期缺乏某种维生素,就会引起生理机能障碍而发生某种疾病。一般由食物中取得。现在发现的有几十种,如维生素A、维生素B、维生素C等 ]维生素的发现   维生素的发现是20世纪的伟大发现之一。1897年,C.艾克曼在爪哇发现只吃精磨的白米即可患脚气病,未经碾磨的糙米能治疗这种病。并发现可治脚气病的物质能用水或酒精提取,当时称这种物质为“水溶性B”。1906年证明食物中含有除蛋白质、脂类、碳水化合物、无机盐和水以外的“辅助因素”,其量很小,但为动物生长所必需。1911年C.丰克鉴定出在糙米中能对抗脚气病的物质是胺类(一类含氮的化合物),它是维持生命所必需的,所以建议命名为“ Vitamine”。即Vital(生命的)amine(胺),中文意思为“生命胺”。以后陆续发现许多维生素,它们的化学性质不同,生理功能不同;也发现许多维生素根本不含胺,不含氮,但丰克的命名延续使用下来了,只是将最后字母“e”去掉。最初发现的维生素B后来证实为维生素B复合体,经提纯分离发现,是几种物质,只是性质和在食品中的分布类似,且多数为辅酶。有的供给量须彼此平衡,如维生素B1、B2和PP,否则可影响生理作用。维生素B 复合体包括:泛酸、烟酸、生物素、叶酸、维生素B1(硫胺素)、维生素B2(核黄素)、吡哆醇(维生素B6)和氰钴胺(维生素B12)。有人也将胆碱、肌醇、对氨基苯酸(对氨基苯甲酸)、肉毒碱、硫辛酸包括在B复合体内。 维生素的概述及分类   维生素是人体代谢中必不可少的有机化合物。人体犹如一座极为复杂的化工厂,不断地进行着各种生化反应。其反应与酶的催化作用有密切关系。酶要产生活性,必须有辅酶参加。已知许多维生素是酶的辅酶或者是辅酶的组成分子。因此,维生素是维持和调节机体正常代谢的重要物质。可以认为,最好的维生素是以“生物活性物质”的形式,存在于人体组织中。   食物中维生素的含量较少,人体的需要量也不多,但却是绝不可少的物质。膳食中如缺乏维生素,就会引起人体代谢紊乱,以致发生维生素缺乏症。如缺乏维生素A会出现夜盲症、干眼病和皮肤干燥;缺乏维生素D可患佝偻病;缺乏维生素B1可得脚气病;缺乏维生素B2可患唇炎、口角炎、舌炎和阴囊炎;缺乏PP可患癞皮病;缺乏维生素B12可患恶性贫血;缺乏维生素C可患坏血病。  维生素是个庞大的家族,就目前所知的维生素就有几十种,大致可分为脂溶性和水溶性两大类。(详见下表)有些物质在化学结构上类似于某种维生素,经过简单的代谢反应即可转变成维生素,此类物质称为维生素原,例如 β-胡萝卜素能转变为维生素A;7-脱氢胆固醇可转变为维生素D3;但要经许多复杂代谢反应才能成为尼克酸的色氨酸则不能称为维生素原。水溶性维生素从肠道吸收后,通过循环到机体需要的组织中,多余的部分大多由尿排出,在体内储存甚少。脂溶性维生素大部分由胆盐帮助吸收,循淋巴系统到体内各器官。体内可储存大量脂溶性维生素。维生素A和D主要储存于肝脏,维生素E主要存于体内脂肪组织,维生素K储存较少。水溶性维生素易溶于水而不易溶于非极性有机溶剂,吸收后体内贮存很少,过量的多从尿中排出;脂溶性维生素易溶于非极性有机溶剂,而不易溶于水,可随脂肪为人体吸收并在体内储积,排泄率不高。分类 名称 发现及别称 来源   脂溶性 抗干眼病维生素(维生素A),亦称美容维生素 由Elmer McCollum和M. Davis在1912年到1914年之间发现。并不是单一的化合物,而是一系列视黄醇的衍生物(视黄醇亦被译作维生素A醇、松香油),别称抗干眼病维生素 鱼肝油、绿色蔬菜   水溶性 硫胺素(维生素B1) 由卡西米尔61冯克在1912年发现(一说1911年)。在生物体内通常以硫胺焦磷酸盐(TPP)的形式存在。 酵母、谷物、肝脏、大豆、肉类   水溶性 核黄素(维生素B2) 由D. T. Smith和E. G. Hendrick在1926年发现。也被称为维生素G 酵母、肝脏、蔬菜、蛋类   水溶性 烟酸(维生素B5) 由Conrad Elvehjem在1937年发现。也被称为维生素P、维生素PP、包括尼克酸(烟酸)和尼克酰胺(烟酰胺)两种物质,均属于吡啶衍生物。菸硷酸、尼古丁酸 酵母、谷物、肝脏、米糠   水溶性 泛酸(维生素B3) 由Roger Williams在1933年发现。亦称为遍多酸 酵母、谷物、肝脏、蔬菜   水溶性 吡哆醇类(维生素B6) 由Paul Gyorgy在1934年发现。包括吡哆醇、吡哆醛及吡哆胺 酵母、谷物、肝脏、蛋类、乳制品   水溶性 生物素(维生素B7) 也被称为维生素H或辅酶R 酵母、肝脏、谷物   水溶性 叶酸(维生素B9) 也被称为蝶酰谷氨酸、蝶酸单麸胺酸、维生素M或叶精 蔬菜叶、肝脏   水溶性 氰钴胺素(维生素B12) 由Karl Folkers和Alexander Todd在1948年发现。也被称为氰钴胺或[[辅酶B12]] 肝脏、鱼肉、肉类、蛋类   水溶性 胆碱 由Maurice Gobley在1850年发现。维生素B族之一 肝脏、蛋黄、乳制品、大豆   水溶性 肌醇 环己六醇、维生素B-h 心脏、肉类   水溶性 抗坏血酸(维生素C) 由詹姆斯61林德在1747年发现。亦称为抗坏血酸 新鲜蔬菜、水果   脂溶性 钙化醇(维生素D) 由Edward Mellanby在1922年发现。亦称为骨化醇、抗佝偻病维生素,主要有维生素D2即麦角钙化醇和维生素D3即胆钙化醇。这是唯一一种人体可以少量合成的维生素 鱼肝油、蛋黄、乳制品、酵母   脂溶性 生育酚(维生素E) 由Herbert Evans及Katherine Bishop在1922年发现。主要有α、β、γ、δ四种 鸡蛋、肝脏、鱼类、植物油   脂溶性 萘醌类(维生素K) 由Henrik Dam在1929年发现。是一系列萘醌的衍生物的统称,主要有天然的来自植物的维生素K1、来自动物的维生素K2以及人工合成的维生素K3和维生素K4。又被称为凝血维生素 菠菜、苜蓿、白菜、肝脏  特点维生素的定义中要求维生素满足四个特点才可以称之为必需维生素:   外源性:人体自身不可合成(维生素D人体可以少量合成,但是由于较重要,仍被作为必需维生素),需要通过食物补充;   微量性:人体所需量很少,但是可以发挥巨大作用;   调节性:维生素必需能够调节人体新陈代谢或能量转变;    维生素 特异性:缺乏了某种维生素后,人将呈现特有的病态。   根据这四个特点,人体一共需要13种维生素,也就是通常所说的13种必要维生素。 物理及化学性质:1.维生素e维生素E是一种脂溶性维生素,又称生育酚,是最主要的抗氧化剂之一。成年人营养补充维生素每日参考用量:维生素a为1.5mg;维生素e为30mg 现在购买的许多保健品也是以mg为单位,这就存在IU(国际单位)与mg(毫克)的换算问题,以便于大家衡量和比较用量,恐怕高剂量会是弊大于利的。 对于不同的元素换算值不同(国际规定的): 维生素A:1IU=0.3ug而1000ug=1mg 维生素E:1IU=1mg 经过计算,正常成年人补充量:维生素A:1.5mg是5000IU;维生素E是30IU。作用:维生素E在人体内作用最为广泛,比任何一种营养素都大,故有“护卫使”之称。在身体内具有良好的抗氧化性, 即降低细胞老化。保持红细胞的完整性,促进细胞合成,抗污染,抗不孕的功效缺乏维生素E,会导致动脉粥洋硬化,血浓性贫血,癌症,白内障等其他老年腿行性病变疾病 ;形成疤痕;会使牙齿发黄;引发近视;引起残障、弱智儿;引起男性性功能低下;前列腺肥大等等。 来源:猕猴桃, 坚果(包括杏仁、榛子和胡桃)、向日葵籽、玉米、冷压的蔬菜油、包括玉米、红花、大豆、棉籽和小麦胚芽(最丰富的一种)、菠菜和羽衣甘蓝、甘薯和山药。莴苣、卷心菜、菜塞花等是含维生素E比较多的蔬菜。 奶类、蛋类、鱼肝油也含有一定的维生素E2.维生素c维生素cIUPAC中文命名(R)-3,4-二羟基-5-((S)- 1,2-二羟乙基)呋喃-2(5H)-1常规分子式C6H8O6分子量176.12uCAS号50-81-7注释酸性,在溶液中会氧化分解物理性质外观无色晶体熔点190 - 192℃沸点无℃紫外吸收最大值:245nm荧光光谱激发波长:无nm荧光波长:无nm维生素性质溶解性水溶性维生素推荐摄入量每日5mg最高摄入量引起腹泻之量缺乏症状坏血病过量症状腹泻主要食物来源新鲜水果、蔬菜等除非注明,物性数据来自标准条件下维生素C又称L-抗坏血酸,是高等灵长类动物与其他少数生物的必需营养素。抗坏血酸在大多的生物体可借由新陈代谢制造出来,但是人类是最显著的例外。最广为人知的是缺乏维生素C会造成坏血病。维生素C的药效基团是抗坏血酸离子。在生物体内,维生素C是一种抗氧化剂,因为它能够保护身体免于氧化剂的威胁,维生素C同时也是一种辅酶。但是由于维生素C是一种必需营养素,它的用途与每天建议使用量经常被讨论。当它作为食品添加剂,维生素C成为一种抗氧化剂和防腐剂的酸度调节剂。多个E字首的数字(E number)收录维生素C,不同的数字取决于它的化学结构 ,像是E300是抗坏血酸,E301为抗坏血酸钠盐,E302为抗坏血酸钙盐,E303为抗坏血酸钾盐,E304为酯类抗坏血酸棕榈和抗坏血酸硬脂酸,E315为异抗坏血酸除虫菊。

蛋白质加水化学式是什么,谢谢

蛋白质+水=氨基酸

植物蛋白的化学式是什么

从营养学上说,植物蛋白大致分为两类:一是完全蛋白质,如大豆蛋白质;二是不完全蛋白质,绝大多数的植物蛋白质属于此类。至于化学式,我认为,植物蛋白有很多种,其实质就是蛋白质。而蛋白质是由各种氨基酸脱水缩合,高度盘曲而成的物质。还有,因为植物蛋白,一般都可以被食用,所以所组成的氨基酸应该有人体内的20种必需氨基酸和非必需氨基酸。植物蛋白之所以会分为多种,就应该是因为他们所含的氨基酸种类和数量不同吧。具体的化学式应该是写不出来的。

高一生物蛋白质填空题,想问一下第二问和第三问,就是填数字那两问,我都错了。看着化学式我怎么知道它是

因为是氨基酸啊,所以,每一个氨基酸上必有一个—NH(氨基)的。那么就数氨基数量就知道有几个氨基酸分子了。然后再看每个氨基酸分子上,除了氨基和连着的肽键以及——H基团以外,就是一个—R基团了。然后你再看有几种氨基酸分子,不同氨基酸分子的——R基团是不同的。这个题有2种氨基酸,因为有两种——R基团,即CH3和CH2OH。所以第二问答案是2。第三问,有三个氨基(——NH),所以第一个空是3。有两个肽键(——COOH与——NH2脱水形成的化合键),其中COOH脱去羟基(——OH),NH2脱去一个H原子。

蛋白质在人体胃肠内与水反应,最终生成氨基酸被人体吸收.丙氨酸(化学式为C3H7O2N)就是其中的一种.请

(1)丙氨酸分子中C、H、O、N各原子个数比=3:7:2:l;故答案为:3:7:2:l.(2)①丙氨酸的相对分子质量=12×3+1×7+16×2+14=89;②丙氨酸中氮元素的质量分数=1489×100%≈15.7%;故答案为:89,15.7%.(3)紫色石蕊遇酸变红色,遇碱不变色.丙氨酸的水溶液能使紫色石蕊变红色,说明丙氨酸的水溶液呈酸性.酸的ph值都小于7;故答案为:<.(4)富含蛋白质的食物可分为豆类、山产类、动物内脏、肉类、家禽类、水产类、蛋类等.由此可知,能提供丰富蛋白质的食物有鱼和大豆.故选:cd.(5)每100g合格奶粉中氮元素的质量:18g×16%=2.88g>2g,故该奶粉不合格.(或蛋白质的质量:2g÷16%=12.5g<l8g,不合格奶粉)

高中化学必修二人教版课堂笔记,最好是图片的哦,当然,文字格式也行。我给200的高分,希望有朋友能够

上网搜“手写笔记化学必修二”就有一个

化学蛋白质变性的反应式是什么?

蛋白质变性的情况复杂,没有具体反应式;原理是:蛋白质的变性作用主要是由于蛋白质分子内部的结构被破坏。天然蛋白质的空间结构是通过氢键等次级键维持的,而变性后次级键被破坏,蛋白质分子就从原来有序的卷曲的紧密结构变为无序的松散的伸展状结构(但一级结构并未改变)。所以,原来处于分子内部的疏水基团大量暴露在分子表面,而亲水基团在表面的分布则相对减少,至使蛋白质颗粒不能与水相溶而失去水膜,很容易引起分子间相互碰撞而聚集沉淀。

蛋白质在人体胃肠内与水反应,最终生成氨基酸被人体吸收。丙氨酸(化学式为C2H2O2N)是其中的一种。

(1)丙氨酸分子中C、H、O、N个原子个数比为2:2:2:1。(2)丙氨酸的相对分子质量是72,氮元素的质量分数为19.4%(计算结果精确到0.1%)(3)合格奶粉每100g中含蛋白质约18g,蛋白质中氮元素的平均质量分数为16%。现测定某奶粉每100g中氮元素的质量为2g.请通过计算判断该奶粉是否属于合格奶粉。

A是蛋白质在酶的作用下水解得到的一种物质,化学式是C3H7O2N

首先由A是蛋白质在酶的作用下水解得到的一种物质,化学式是C3H7O2N可知A是氨基酸,但是在酶的作用下水解蛋白质得到的氨基酸都是α-氨基酸(氨基和羧基连于同一碳上),故可知A为CH3CH(NH2)COOH(丙氨酸),再由以下的转化关系可推知B,C,D,E结构

蛋白质的化学式?

蛋白质没有化学式。它由20多种氨基酸组合而成的多聚体。蛋白质的组成1、化学组成:单纯蛋白质:仅含有AAs。结合蛋白质:由AAs和其他非蛋白质化合物所组成。衍生蛋白质:用化学或酶学方法得到的化合物。2、分子组成基本单位:氨基酸 有不同的AAs通过肽键相互连接而成。蛋白质→_→胨→多肽→二肽→多肽→氨基酸3、元素组成由碳,氢,氧,氮,硫,磷,碘,铁,锌等元素组成。4、功能分类结构蛋白质:角蛋白,胶原蛋白,弹性蛋白。有生物活性的蛋白质:酶,激素,免疫球蛋白。食品蛋白质:凡可供食用,易消化,无毒和可供人类利用的蛋白质。扩展资料:组成及特点蛋白质是由C(碳)、H(氢)、O(氧)、N(氮)组成,一般蛋白质可能还会含有P(磷)、S(硫)、Fe(铁)、Zn(锌)、Cu(铜)、B(硼)、Mn(锰)、I(碘)、Mo(钼)等。这些元素在蛋白质中的组成百分比约为:碳50% 氢7% 氧23% 氮16% 硫0~3% 其他微量。(1)一切蛋白质都含氮元素,且各种蛋白质的含氮量很接近,平均为16%;(2)蛋白质系数:任何生物样品中每1g元氮的存在,就表示大约有100/16=6.25g蛋白质的存在, 6.25常称为蛋白质常数。整体结构蛋白质是以氨基酸为基本单位构成的生物高分子。蛋白质分子上氨基酸的序列和由此形成的立体结构构成了蛋白质结构的多样性。蛋白质具有一级、二级、三级、四级结构,蛋白质分子的结构决定了它的功能。一级结构(primary structure):氨基酸残基在蛋白质肽链中的排列顺序称为蛋白质的一级结构,每种蛋白质都有唯一而确切的氨基酸序列。二级结构(secondary structure):蛋白质分子中肽链并非直链状,而是按一定的规律卷曲(如α-螺旋结构)或折叠(如β-折叠结构)形成特定的空间结构,这是蛋白质的二级结构。蛋白质的二级结构主要依靠肽链中氨基酸残基亚氨基(—NH—)上的氢原子和羰基上的氧原子之间形成的氢键而实现的。三级结构(tertiary structure):在二级结构的基础上,肽链还按照一定的空间结构进一步形成更复杂的三级结构。肌红蛋白,血红蛋白等正是通过这种结构使其表面的空穴恰好容纳一个血红素分子。四级结构(quaternary structure):具有三级结构的多肽链按一定空间排列方式结合在一起形成的聚集体结构称为蛋白质的四级结构。如血红蛋白由4个具有三级结构的多肽链构成,其中两个是α-链,另两个是β-链,其四级结构近似椭球形状。连接方法用约20种氨基酸作原料,在细胞质中的核糖体上,将氨基酸分子互相连接成肽链。一个氨基酸分子的氨基和另一个氨基酸分子的羧基,脱去一分子水而连接起来,这种结合方式叫做脱水缩合。通过缩合反应,在羧基和氨基之间形成的连接两个氨基酸分子的那个键叫做肽键。由肽键连接形成的化合物称为肽。参考资料来源:百度百科-蛋白质 (生命的物质基础)

蛋白质的化学式?

蛋白质没有化学式。它由20多种氨基酸按不同比例组合而成的。蛋白质是组成人体一切细胞、组织的重要成分。机体所有重要的组成部分都需要有蛋白质的参与。一般说,蛋白质约占人体全部质量的18%,最重要的还是其与生命现象有关。蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。氨基酸是蛋白质的基本组成单位。它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。扩展资料蛋白质是由α-氨基酸通过肽键构成的高分子化合物,在蛋白质分子中存在着氨基和羧基,因此跟氨基酸相似,蛋白质也是两性物质。蛋白质在酸、碱或酶的作用下发生水解反应,经过多肽,最后得到多种α-氨基酸。蛋白质水解时,应找准结构中键的“断裂点”,水解时肽键部分或全部断裂。胶体性质,有些蛋白质能够溶解在水里(例如鸡蛋白能溶解在水里)形成溶液。蛋白质的分子直径达到了胶体微粒的大小(10-9~10-7m)时,所以蛋白质具有胶体的性质。沉淀的原因加入高浓度的中性盐、加入有机溶剂、加入重金属、加入生物碱或酸类、热变性少量的盐(如硫酸铵、硫酸钠等)能促进蛋白质的溶解。如果向蛋白质水溶液中加入浓的无机盐溶液,可使蛋白质的溶解度降低,而从溶液中析出,这种作用叫做盐析。参考资料:百度百科-蛋白质(生命的物质基础)

蛋白质的化学式?

蛋白质没有化学式。它由20多种氨基酸按不同比例组合而成的。蛋白质是组成人体一切细胞、组织的重要成分。机体所有重要的组成部分都需要有蛋白质的参与。一般说,蛋白质约占人体全部质量的18%,最重要的还是其与生命现象有关。蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。氨基酸是蛋白质的基本组成单位。它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。扩展资料蛋白质是由α-氨基酸通过肽键构成的高分子化合物,在蛋白质分子中存在着氨基和羧基,因此跟氨基酸相似,蛋白质也是两性物质。蛋白质在酸、碱或酶的作用下发生水解反应,经过多肽,最后得到多种α-氨基酸。蛋白质水解时,应找准结构中键的“断裂点”,水解时肽键部分或全部断裂。胶体性质,有些蛋白质能够溶解在水里(例如鸡蛋白能溶解在水里)形成溶液。蛋白质的分子直径达到了胶体微粒的大小(10-9~10-7m)时,所以蛋白质具有胶体的性质。沉淀的原因加入高浓度的中性盐、加入有机溶剂、加入重金属、加入生物碱或酸类、热变性少量的盐(如硫酸铵、硫酸钠等)能促进蛋白质的溶解。如果向蛋白质水溶液中加入浓的无机盐溶液,可使蛋白质的溶解度降低,而从溶液中析出,这种作用叫做盐析。参考资料:百度百科-蛋白质(生命的物质基础)

蛋白质的化学式?

蛋白质没有化学式。它由20多种氨基酸按不同比例组合而成的。蛋白质是组成人体一切细胞、组织的重要成分。机体所有重要的组成部分都需要有蛋白质的参与。一般说,蛋白质约占人体全部质量的18%,最重要的还是其与生命现象有关。蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。氨基酸是蛋白质的基本组成单位。它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。蛋白质占人体重量的16%~20%,即一个60kg重的成年人其体内约有蛋白质9.6~12kg。人体内蛋白质的种类很多,性质、功能各异,但都是由20多种氨基酸按不同比例组合而成的,并在体内不断进行代谢与更新。扩展资料蛋白质是由α-氨基酸通过肽键构成的高分子化合物,在蛋白质分子中存在着氨基和羧基,因此跟氨基酸相似,蛋白质也是两性物质。蛋白质在酸、碱或酶的作用下发生水解反应,经过多肽,最后得到多种α-氨基酸。蛋白质水解时,应找准结构中键的“断裂点”,水解时肽键部分或全部断裂。胶体性质,有些蛋白质能够溶解在水里(例如鸡蛋白能溶解在水里)形成溶液。蛋白质的分子直径达到了胶体微粒的大小(10-9~10-7m)时,所以蛋白质具有胶体的性质。沉淀的原因加入高浓度的中性盐、加入有机溶剂、加入重金属、加入生物碱或酸类、热变性少量的盐(如硫酸铵、硫酸钠等)能促进蛋白质的溶解。如果向蛋白质水溶液中加入浓的无机盐溶液,可使蛋白质的溶解度降低,而从溶液中析出,这种作用叫做盐析。参考资料:百度百科-蛋白质(生命的物质基础)

蛋白质的化学式

蛋白质没有化学式,它由20多种氨基酸组合而成的多聚体。单纯蛋白质:仅含有AAs。结合蛋白质:由AAs和其他非蛋白质化合物所组成。衍生蛋白质:用化学或酶学方法得到的化合物。蛋白质是生命的物质基础,是有机大分子,是构成细胞的基本有机物,是生命活动的主要承担者。没有蛋白质就没有生命。氨基酸是蛋白质的基本组成单位。它是与生命及与各种形式的生命活动紧密联系在一起的物质。机体中的每一个细胞和所有重要组成部分都有蛋白质参与。

蛋白质的化学式

蛋白质是由C(碳)、H(氢)、O(氧)、N(氮)组成,一般蛋白质可能还会含有P、S、Fe(铁)、Zn(锌)、Cu(铜)、B(硼)、Mn(锰)、I(碘)、Mo(钼)等   这些元素在蛋白质中的组成百分比约为:碳50% 氢7% 氧23% 氮16% 硫0~3% 其他微量

蛋白质的化学式?

生物体内的蛋白质是由若干α-氨基酸(20种)经过脱水缩合形成一条或多条肽链,再经过盘曲折叠形成复杂的空间结构得到的蛋白质没有固定的化学式,它是一类含氮的生物高分子,分子量大,结构复杂,其通常由c、h、o、n、s等元素组成如血红蛋白:c3032h4816o812n780s8fe4

蛋白质的化学式

生物体内的蛋白质是由若干α-氨基酸(20种)经过脱水缩合形成一条或多条肽链,再经过盘曲折叠形成复杂的空间结构得到的;蛋白质没有固定的化学式,它是一类含氮的生物高分子,分子量大,结构复杂,其通常由C、H、O、N、S等元素组成. 具体的例如: 血红蛋白化学式:C3032H4816O812N780S8Fe4; 猪胰岛素化学式:C255H380O78N65S6; 特慢胰岛素锌混悬液化学式:C257H383N65O77S6.

蛋白质的主要成分的化学式是什么

生物体内的蛋白质是由若干α-氨基酸(20种)经过脱水缩合形成一条或多条肽链,再经过盘曲折叠形成复杂的空间结构得到的蛋白质没有固定的化学式,它是一类含氮的生物高分子,分子量大,结构复杂,其通常由C、H、O、N、S等元素组成如血红蛋白:C3032H4816O812N780S8Fe4

血红蛋白质的化学式是什么?谁知道呀?

蛋白质没有固定的化学式,它是一类含氮的生物高分子,分子量大,结构复杂。例如血红蛋白的分子式 是C3032H4816O812N780S8Fe4。蛋白质的基本组成单位是氨基酸。蛋白质基本上由20种常见的氨基酸按不同序列组成,氨基酸则由遗传密码决定。

谁知道蛋白质的化学式

蛋白质没有固定的化学式,它是一类含氮的生物高分子,分子量大,结构复杂。例如血红蛋白的分子式是C3032H4816O812N780S8Fe4。蛋白质的基本组成单位是氨基酸。蛋白质基本上由20种常见的氨基酸按不同序列组成,氨基酸则由遗传密码决定。
 首页 上一页  24 25 26 27 28 29 30 31 32 33 34  下一页  尾页