根号x分之一的原函数是什么???
答案:1/√x的原函数是2√x+C,(C是任意常数)做法可以有以下两种:导函数法:对于幂函数f(x)=ax^m+C而言,容易求得其导函数是f`(x)=amx^(m-1),因此由于题目中给出的为导函数f`(x)=1/√x=x^(-1/2),可知am=1,m-1=-1/2。解这个二元一次方程组可以得到a=2,m=1/2,所以f(x)=2x^(1/2)+C=2√x+C。积分表法:即f(x)=∫1/√xdx,经查下表,根据地2条可知f(x)=2√x+C. 附录常用积分表(以下C指任意常数): ∫adx=ax+C,(a为常数) ∫x^adx=x^(a+1)/(a+1)+C,其中a为常数,且a≠-1 ∫1/xdx=lnx+C ∫e^xdx=e^x+C ∫a^xdx=a^x/lna+C,其中a>0,且a≠1 ∫sinxdx=-cosx+C ∫cosxdx=sinx+C。扩展资料:若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。参考资料来源:百度百科——原函数
已知函数y=√x的不定积分为?
方法如下,请作参考:若有帮助,请采纳。
根号x的原函数是什么?
√x的原函数是2√x+C,(C是任意常数)。做法可以有以下两种:导函数法:对于幂函数f(x)=ax^m+C而言,容易求得其导函数是f`(x)=amx^(m-1),因此由于题目中给出的为导函数f`(x)=1/√x=x^(-1/2),可知am=1,m-1=-1/2。解这个二元一次方程组可以得到a=2,m=1/2,所以f(x)=2x^(1/2)+C=2√x+C。积分表法:即f(x)=∫1/√xdx,经查下表,根据地2条可知f(x)=2√x+C。附录常用积分表(以下C指任意常数):∫adx=ax+C,(a为常数)。∫x^adx=x^(a+1)/(a+1)+C,其中a为常数,且a≠-1。∫1/xdx=lnx+C。∫e^xdx=e^x+C。∫a^xdx=a^x/lna+C,其中a>0,且a≠1。∫sinxdx=-cosx+C。∫cosxdx=sinx+C。若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。例如:已知作直线运动的物体在任一时刻t的速度为v=v(t),要求它的运动规律,就是求v=v(t)的原函数。原函数的存在问题是微积分学的基本理论问题,当f(x)为连续函数时,其原函数一定存在。
√x写成幂函数是多少
写成幂函数,是x的(1/2)次方。因这里不便书写,故将我的答案做成图像贴于下方。
根号下x怎么用x的幂函数表示
x的(1/2)次方。根据根号下x与幂函数的转化关系,根号下y=根号x可以变化为f(X)=x的1/2次方,根号下x用x的幂函数来表示就是x的(1/2)次方。
怎样分辨函数对称性和周期性?
1.对称性f(x+a)=f(b_x)记住此方程式是对称性的一般形式.只要x有一个正一个负.就有对称性.至于对称轴可用吃公式求X=a+b/2如f(x+3)=f(5_x)X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用.你可以去套用,在此不在举例.对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴.如一原二次方程f(x)=ax2+bx+c对称轴X=b/2a 原函数与反函数的对称轴是y=x. 而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有...(2n+!)90度等等.因为他的定义为R. f(x)=|X|他的对称轴则是X=0, 还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了. 如f(x-3)=x-3令t=x-3则f(t)=t可见原方程是由初等函数向右移动了3个单位.同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移)2,至于周期性首先也的从一般形式说起f(x)=f(x+T) 注意此公式里面的X都是同号,而不象对称方程一正一负.此区别也是判断对称性还是周期性的关键. 同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是.2π,2π,π,当然他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期.如f(x)=sinX T=2π(T=2π/W)但是如果是f(x)=|sinx|的话它的周期就是T=π因为加了绝对值之后Y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周T=π. y1=(sinx)^2=(1-cos2x)/2 y2=(cosx)^2=(1+cos2x)/2上面的2个方程T=π(T=2π/W)而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期T=π所以它的周期为T=π 而对于不相同的周期则它的周期为它们各个周期的最小公倍数.如y=sin3πx+cos2πx T1=2/3 T2=1则T=2/3
如何判断两个函数对称?
两个函数对称性结论的推导如下:函数的对称性常用结论为:函数的对称性是如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。对称变换:1、函数y=f(x)的图象关于y轴对称的图像为y=f(-x)。关于x轴对称的图像为y=-f(x);关于原点对称的图像为y=-f(-x)。2、函数y=f(x)的图象关于x=a对称的图像为y=f(2a-x);关于y=b对称的图像为y=2b-f(x);关于点(a,b)中心对称的图像为y=2b-f(2a-x)。函数对称性的总结公式是:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。拓展资料:函数的对称性是如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴.如一原二次方程f(x)=ax2bxc对称轴X=b/2a。原函数与反函数的对称轴是y=x。
函数的周期性对称性,在数学的哪一章
高中数学 必修1 第2章 函数性质 第49式 对称性与周期性2
想问下参数方程怎么判断对称性呢,比如下面的函数
对于任意(x,y),即t=t0时,图像上的点为(a(cost0)^3,a(sint0)^3) 则对于(-x,y),即-x=a(cost0)^3,则x=a(-cost0)^3=a[cos(π-t0)]^3,而y=a(sint0)^3=a[sin(π-t0)]^3 即当t=π-t0时有(-x,y),即该图像关于y轴对称。同理对于(x,-y),即y=-a(sint0)^3,则y=a(-sint0)^3=a[sin(-t0)]^3,而x=a(cost0)^3=a[cos(-t0)]^3 即当t=-t0时有(x,-y),即该图像关于x轴对称。
函数的对称性有哪些常用结论
函数的对称性包括以下常用结论:1. 奇偶性对称:奇函数和偶函数是函数图像关于某个特定坐标轴的对称。奇函数满足 f(-x) = -f(x),图像关于原点对称;偶函数满足 f(-x) = f(x),图像关于 y 轴对称。2. 中心对称:函数图像关于某个点对称。该点通常被称为对称中心。例如, y = 1/x 是关于原点对称的。3. 水平对称:函数图像在水平方向上对称。即,如果点 (x, y) 在图像上,则点 (-x, y) 也在图像上。例如, y = sin(x) 是关于 y 轴对称的。4. 垂直对称:函数图像在垂直方向上对称。即,如果点 (x, y) 在图像上,则点 (x, -y) 也在图像上。例如, y = cos(x) 是关于 x 轴对称的。5. 旋转对称:函数图像在经过旋转一定角度后对称。其中,最常见的是圆的旋转对称,即圆的任意点旋转180度后仍位于圆上。这些对称性结论可用于分析函数图像的性质,确定图像的特征,以及推导出函数的性质。但需要注意的是,并非所有函数都具有对称性,对称性是特殊的性质,需要根据具体的函数进行分析。
如何判断函数关于某点是否对称?
简单分析一下,详情如图所示
如何判断一个函数的对称性
对称性f(x+a)=f(b-x)记住此方程式,这是对称性的一般形式.只要x有一个正一个负.就有对称性.至于对称轴可用公式求x=(a+b)/2其一,定义域必须对称(对于奇函数和偶函数而言)。其二,奇函数图象关于原点对称,偶函数图象关于y对称。关于x对称的函数你可以将函数中的y换成-y,如果其函数值不便则真。其三,一个函数的反函数为其自身则关于x=y对称如果f(-x,y)=f(x,y)则是关于y轴对称,如果f(x,-y)=f(x,y)则是关于x轴对称,如果f(-x,-y)=f(x,y)则是关于原点对称,如果f(y,x)=f(x,y)则是关于x=y对称,
函数对称性的常用结论及推导过程
函数对称性的常用结论及推导过程如下:1、如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。2、如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。3、如果函数f(x)(x∈D)在定义域内有一条对称轴x=a和一个对称中心B(b,0)(a≠b),则函数f(x)是周期函数,且周期T=4|b-a|(不一定为最小正周期)。函数的对称性:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。函数的对称性公式推导:1、对称性f(x+a)=f(b-x)记住此方程式是对称性的一般形式.只要x有一个正一个负。就有对称性.至于对称轴可用吃公式求X=a+b/2。如f(x+3)=f(5_x)X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用。你可以去套用,在此不在举例。对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴。如:一原二次方程f(x)=ax2+bx+c对称轴X=b/2a。原函数与反函数的对称轴是y=x。而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有…(2n+!)90度等等.因为他的定义为R。f(x)=|X|他的对称轴则是X=0。还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了。如f(x-3)=x-3。令t=x-3,则f(t)=t。可见原方程是由初等函数向右移动了3个单位。同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移)。2、至于周期性首先也的从一般形式说起f(x)=f(x+T)。注意此公式里面的X都是同号,而不象对称方程一正一负。此区别也是判断对称性还是周期性的关键。同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是2π,2π,π,当然他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期,如“f(x)=sinX,T=2π(T=2π/W)。但是如果是f(x)=|sinx|的话它的周期就是T=π因为加了绝对值之后Y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周T=π。y1=(sinx)^2=(1-cos2x)/2,y2=(cosx)^2=(1+cos2x)/2,上面的2个方程T=π(T=2π/W),而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期T=π所以它的周期为T=π。而对于不相同的周期则它的周期为它们各个周期的最小公倍数,如:y=sin3πx+cos2πx,T1=2/3,T2=1则T=2/3。
函数的周期性和对称性口诀是什么?
函数的周期性和对称性口诀是和对称差周期。若f(x+a)=-f(x+b),多一个负号。(x+a)-(x+b)=a-b,周期X2。周期性,T=2|a-b|。若f(x+a)=-f(-x+b),多一个负号。(x+a)+(-x+b)=a+b,轴变中心。对称性,对称中心((a+b)/2,0)。对称性的概念:1、函数轴对称:如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。2、中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。性质:1、如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。2、如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。3、如果函数f(x)(x∈D)在定义域内有一条对称轴x=a和一个对称中心B(b, 0)(a≠b),则函数f(x)是周期函数,且周期T=4|b-a|(不一定为最小正周期)。
二次函数的对称性规律口诀
二次函数的对称性规律口诀:抛物线关于x轴、y轴、原点、顶点对称的抛物线的解析式。二次函数图像的对称一般有四种情况,可以用一般式或顶点式表达,分别是:1. 关于x轴对称,y=ax+bx+c关于x轴对称后,得到的解析式是y=-ax-bx-c;y=a(x-h)+k关于x轴对称后,得到的解析式是y=-a(x-h)-k. 2. 关于y轴对称,y=ax+bx+c 关于y轴对称后,得到的解析式是y=ax-bx+c;y=a(x-h)+k关于y轴对称后,得到的解析式;y=a(x+h)+k。3. 关于原点对称,y=ax+bx+c关于原点对称后,得到的解析式是y=-ax+bx-c;y=a(x-h)+k关于原点对称后,得到的解析式是y=-a(x-h)+k;4. 关于顶点对称,y=ax+bx+c关于顶点对称后,得到的解析式是y=-ax-bx+c-b/2a;y=a(x-h)+k关于顶点对称后,得到的解析式是y=-a(x-h)+k.
如何判断函数对称性
对称性f(x+a)=f(b-x)记住此方程式,这是对称性的一般形式.只要x有一个正一个负.就有对称性.至于对称轴可用公式求x=(a+b)/2其一,定义域必须对称(对于奇函数和偶函数而言)。其二,奇函数图象关于原点对称,偶函数图象关于y对称。关于x对称的函数你可以将函数中的y换成-y,如果其函数值不便则真。其三,一个函数的反函数为其自身则关于x=y对称如果f(-x,y)=f(x,y)则是关于y轴对称,如果f(x,-y)=f(x,y)则是关于x轴对称,如果f(-x,-y)=f(x,y)则是关于原点对称,如果f(y,x)=f(x,y)则是关于x=y对称,
函数的对称性公式推导
找的多是没有用的,关键是你要掌握原理. 1.对称性f(x+a)=f(b_x)记住此方程式是对称性的一般形式.只要x有一个正一个负.就有对称性.至于对称轴可用吃公式求X=a+b/2 如f(x+3)=f(5_x) X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用.你可以去套用,在此不在举例. 对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴.如一原二次方程f(x)=ax2+bx+c对称轴X=b/2a 原函数与反函数的对称轴是y=x. 而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有...(2n+!)90度等等.因为他的定义为R. f(x)=|X|他的对称轴则是X=0, 还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了. 如f(x-3)=x-3令t=x-3则f(t)=t可见原方程是由初等函数向右移动了3个单位.同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移) 2,至于周期性首先也的从一般形式说起f(x)=f(x+T) 注意此公式里面的X都是同号,而不象对称方程一正一负.此区别也是判断对称性还是周期性的关键. 同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是.2π,2π,π,当然 他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期.如f(x)=sinX T=2π(T=2π/W) 但是如果是f(x)=|sinx|的话它的周期就是T=π因为加了绝对值之后Y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周T=π. y1=(sinx)^2=(1-cos2x)/2 y2=(cosx)^2=(1+cos2x)/2 上面的2个方程T=π(T=2π/W) 而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期T=π所以它的周期为T=π 而对于不相同的周期则它的周期为它们各个周期的最小公倍数.如 y=sin3πx+cos2πx T1=2/3 T2=1则T=2/3
二次函数的对称性规律有哪些?
二次函数的对称性规律口诀:抛物线关于x轴、y轴、原点、顶点对称的抛物线的解析式。二次函数图像的对称一般有四种情况,可以用一般式或顶点式表达,分别是:1. 关于x轴对称,y=ax+bx+c关于x轴对称后,得到的解析式是y=-ax-bx-c;y=a(x-h)+k关于x轴对称后,得到的解析式是y=-a(x-h)-k. 2. 关于y轴对称,y=ax+bx+c 关于y轴对称后,得到的解析式是y=ax-bx+c;y=a(x-h)+k关于y轴对称后,得到的解析式;y=a(x+h)+k。3. 关于原点对称,y=ax+bx+c关于原点对称后,得到的解析式是y=-ax+bx-c;y=a(x-h)+k关于原点对称后,得到的解析式是y=-a(x-h)+k;4. 关于顶点对称,y=ax+bx+c关于顶点对称后,得到的解析式是y=-ax-bx+c-b/2a;y=a(x-h)+k关于顶点对称后,得到的解析式是y=-a(x-h)+k.
如何判断函数关于点是否对称?
①知识点定义来源&讲解:函数关于点的对称性是函数图像在某个点处表现出左右对称的性质。当一个函数关于某点对称时,该点被称为对称中心。以对称中心为中心,函数图像在两侧是一样的,即在关于对称中心的左右两侧的函数值相等。函数关于点对称的概念源自数学中对对称性的研究。在函数图像的研究中,研究函数的对称性有助于理解和描述函数的特征。②知识点运用:函数关于点对称的概念常用于函数图像的研究、图形的绘制和问题的求解。通过识别函数关于点对称的特点,可以简化函数的表达式、分析函数图像的性质、研究函数的变化规律等。对称性有助于简化问题,减少运算量,并提供更直观的几何解释。③知识点例题讲解:例1:判断函数 y = x^2 是否关于原点对称。解析:原点 (0, 0) 是函数 y = x^2 的一个解。将函数的自变量取负值,即计算函数在 (-x) 时的函数值,可以发现 y = (-x)^2 = x^2,即在原点两侧的函数值相等。因此,函数 y = x^2 关于原点对称。例2:判断函数 y = sin(x) 是否关于 y 轴对称。解析:将函数的自变量取负值,即计算函数在 (-x) 时的函数值,可以发现 y = sin(-x) = -sin(x)。即在 y 轴两侧的函数值相反。因此,函数 y = sin(x) 不关于 y 轴对称。例3:判断函数 y = 1/x 是否关于直线 y = x 对称。解析:将函数的自变量和因变量互换,即将 x 替换为 y,y 替换为 x,可以得到 x = 1/y。这相当于将函数图像绕直线 y = x 进行对称变换。因此,函数 y = 1/x 关于直线 y = x 对称。通过以上例题,可以展示函数关于点对称的概念,并在具体的函数中进行应用和判断。
什么是函数的对称性?
两个函数对称性结论的推导如下:函数的对称性常用结论为:函数的对称性是如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。对称变换:1、函数y=f(x)的图象关于y轴对称的图像为y=f(-x)。关于x轴对称的图像为y=-f(x);关于原点对称的图像为y=-f(-x)。2、函数y=f(x)的图象关于x=a对称的图像为y=f(2a-x);关于y=b对称的图像为y=2b-f(x);关于点(a,b)中心对称的图像为y=2b-f(2a-x)。函数对称性的总结公式是:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。拓展资料:函数的对称性是如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴.如一原二次方程f(x)=ax2bxc对称轴X=b/2a。原函数与反函数的对称轴是y=x。
函数对称性有哪些
函数对称性的常用结论及推导过程如下:1、如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。2、如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。3、如果函数f(x)(x∈D)在定义域内有一条对称轴x=a和一个对称中心B(b,0)(a≠b),则函数f(x)是周期函数,且周期T=4|b-a|(不一定为最小正周期)。函数的对称性:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。函数的对称性公式推导:1、对称性f(x+a)=f(b-x)记住此方程式是对称性的一般形式.只要x有一个正一个负。就有对称性.至于对称轴可用吃公式求X=a+b/2。如f(x+3)=f(5_x)X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用。你可以去套用,在此不在举例。对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴。如:一原二次方程f(x)=ax2+bx+c对称轴X=b/2a。原函数与反函数的对称轴是y=x。而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有…(2n+!)90度等等.因为他的定义为R。f(x)=|X|他的对称轴则是X=0。还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了。如f(x-3)=x-3。令t=x-3,则f(t)=t。可见原方程是由初等函数向右移动了3个单位。同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移)。2、至于周期性首先也的从一般形式说起f(x)=f(x+T)。注意此公式里面的X都是同号,而不象对称方程一正一负。此区别也是判断对称性还是周期性的关键。同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是2π,2π,π,当然他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期,如“f(x)=sinX,T=2π(T=2π/W)。但是如果是f(x)=|sinx|的话它的周期就是T=π因为加了绝对值之后Y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周T=π。y1=(sinx)^2=(1-cos2x)/2,y2=(cosx)^2=(1+cos2x)/2,上面的2个方程T=π(T=2π/W),而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期T=π所以它的周期为T=π。而对于不相同的周期则它的周期为它们各个周期的最小公倍数,如:y=sin3πx+cos2πx,T1=2/3,T2=1则T=2/3。
怎么判断一次函数的图像的对称性?
图像在第一,第一象限关于y轴对称,是抛物线。图像在第二象限单调递减,在第一象限单调递增。如图所示:图象性质:1. 作法与图形:通过如下3个步骤:算出该函数图象与Y轴和X轴的交点的坐标;描点;连线,可以作出一次函数的图象——一条直线。2. 性质:在一次函数上的任意一点P(x,y),都满足等式:y=kx+b。3. k,b与函数图象所在象限。当k>0时,直线必通过一、三象限,从左往右,y随x的增大而增大;当k<0时,直线必通过二、四象限,从左往右,y随x的增大而减小;当b>0时,直线必通过一、二象限;当b<0时,直线必通过三、四象限。特别地,当b=O时,直线通过原点O(0,0)表示的是正比例函数的图象。这时,当k>0时,直线只通过一、三象限;当k<0时,直线只通过二、四 象限。
两个关于函数图象对称性的结论
1.x=02.x=(a+b)/2.∵y=f(a+x)=f[(a+b)/2+(a-b)/2+x]=f[(a+b)/2+t],其中t=(a-b)/2+x,而y=f(b-x)=f[(a+b)/2-(a-b)/2-x]=f[(a+b)/2-((a-b)/2+x)]=f[(a+b)/2-t],所以:函数y=f(a+x)与函数y=f(b-x)的图象关于直线x=(a+b)/2对称。楼主你好:2的答案就是x=(a+b)/2.不是x=(b-a)/2.若是后者,当a=b时对称轴就成x=0了,这显然错误。其实当a=b时对称轴显然是x=a,与我这里的答案符合。
如何判断点关于函数对称?
①知识点定义来源&讲解:函数关于点的对称性是函数图像在某个点处表现出左右对称的性质。当一个函数关于某点对称时,该点被称为对称中心。以对称中心为中心,函数图像在两侧是一样的,即在关于对称中心的左右两侧的函数值相等。函数关于点对称的概念源自数学中对对称性的研究。在函数图像的研究中,研究函数的对称性有助于理解和描述函数的特征。②知识点运用:函数关于点对称的概念常用于函数图像的研究、图形的绘制和问题的求解。通过识别函数关于点对称的特点,可以简化函数的表达式、分析函数图像的性质、研究函数的变化规律等。对称性有助于简化问题,减少运算量,并提供更直观的几何解释。③知识点例题讲解:例1:判断函数 y = x^2 是否关于原点对称。解析:原点 (0, 0) 是函数 y = x^2 的一个解。将函数的自变量取负值,即计算函数在 (-x) 时的函数值,可以发现 y = (-x)^2 = x^2,即在原点两侧的函数值相等。因此,函数 y = x^2 关于原点对称。例2:判断函数 y = sin(x) 是否关于 y 轴对称。解析:将函数的自变量取负值,即计算函数在 (-x) 时的函数值,可以发现 y = sin(-x) = -sin(x)。即在 y 轴两侧的函数值相反。因此,函数 y = sin(x) 不关于 y 轴对称。例3:判断函数 y = 1/x 是否关于直线 y = x 对称。解析:将函数的自变量和因变量互换,即将 x 替换为 y,y 替换为 x,可以得到 x = 1/y。这相当于将函数图像绕直线 y = x 进行对称变换。因此,函数 y = 1/x 关于直线 y = x 对称。通过以上例题,可以展示函数关于点对称的概念,并在具体的函数中进行应用和判断。
函数对称性的三个常用结论推导
函数对称性的三个常用结论推导如下:函数的对称性:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。函数的对称性公式推导:1、对称性f(x+a)=f(b-x)记住此方程式是对称性的一般形式.只要x有一个正一个负。就有对称性.至于对称轴可用吃公式求X=a+b/2。如f(x+3)=f(5_x)X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用。你可以去套用,在此不在举例。对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴。如:一原二次方程f(x)=ax2+bx+c对称轴X=b/2a。原函数与反函数的对称轴是y=x。而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有…(2n+!)90度等等.因为他的定义为R。f(x)=|X|他的对称轴则是X=0。还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了。如f(x-3)=x-3。令t=x-3,则f(t)=t。可见原方程是由初等函数向右移动了3个单位。同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移)。2、至于周期性首先也的从一般形式说起f(x)=f(x+T)。注意此公式里面的X都是同号,而不象对称方程一正一负。此区别也是判断对称性还是周期性的关键。同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是2π,2π,π,当然他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期,如“f(x)=sinX,T=2π(T=2π/W)。但是如果是f(x)=|sinx|的话它的周期就是T=π因为加了绝对值之后Y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周T=π。y1=(sinx)^2=(1-cos2x)/2y2=(cosx)^2=(1+cos2x)/2上面的2个方程T=π(T=2π/W)而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期T=π所以它的周期为T=π。而对于不相同的周期则它的周期为它们各个周期的最小公倍数,如:y=sin3πx+cos2πx,T1=2/3,T2=1则T=2/3。
如何判断函数的对称轴?
函数对称性的公式总结如下:1. 奇函数的对称性:- f(-x) = - f(x)- 奇函数关于原点对称,即图像关于原点旋转180度后重合。2. 偶函数的对称性:- f(-x) = f(x)- 偶函数关于y轴对称,即图像关于y轴翻折后重合。3. 周期函数的对称性:- f(x + T) = f(x),其中T为正周期- 周期函数具有平移对称性,在每个周期内的图像是相似的。4. 中心对称函数的对称性:- f(-x) = f(x),且f(0) = 0- 中心对称函数关于原点对称,即图像关于原点旋转180度后重合,并且通过原点。以上是常见对称性的公式总结。这些对称性公式可以用于判断和分析函数的对称性,从而更好地理解函数的性质和图像。当我们能够确定函数的对称性时,可以简化对函数的理解和计算。
两个函数对称性结论的推导
两个函数对称性结论的推导如下:函数的对称性常用结论为:函数的对称性是如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。对称变换:1、函数y=f(x)的图象关于y轴对称的图像为y=f(-x)。关于x轴对称的图像为y=-f(x);关于原点对称的图像为y=-f(-x)。2、函数y=f(x)的图象关于x=a对称的图像为y=f(2a-x);关于y=b对称的图像为y=2b-f(x);关于点(a,b)中心对称的图像为y=2b-f(2a-x)。函数对称性的总结公式是:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。拓展资料:函数的对称性是如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴.如一原二次方程f(x)=ax2bxc对称轴X=b/2a。原函数与反函数的对称轴是y=x。
函数的周期性和对称性的区别
函数周期性用减法,函数对称性用加法。如:1、函数f(x)满足f(x+a)=f(x+b),则函数f(x)的周期是T=|(x+a)-(x+b)|=|a-b|2、函数f(x)满足f(x+a)=f(b-x),则函数f(x)的对称轴是x=[(x+a)+(b-x)]/2=(a+b)/2
关于函数和解析几何中的对称问题
函数的对称性及其应用:http://www.mathschina.com/gaozhongdagang/showsoft.asp?softid=11639我的经验:f(x)与f(-x)关于y轴对称f(x)与-f(x)关于x轴对称f(x)与-f(-x)关于原点对称
函数的周期性与对称性
1.对称性f(x+a)=f(b_x)记住此方程式是对称性的一般形式.只要x有一个正一个负.就有对称性.至于对称轴可用吃公式求x=a+b/2如f(x+3)=f(5_x)x=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用.你可以去套用,在此不在举例.对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴.如一原二次方程f(x)=ax2+bx+c对称轴x=b/2a 原函数与反函数的对称轴是y=x. 而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是x=90还有...(2n+!)90度等等.因为他的定义为r. f(x)=|x|他的对称轴则是x=0, 还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了. 如f(x-3)=x-3令t=x-3则f(t)=t可见原方程是由初等函数向右移动了3个单位.同样对称轴也向右移3个单位x=3(记住平移是左加右减的形式,如本题的x-3说明向由移)2,至于周期性首先也的从一般形式说起f(x)=f(x+t) 注意此公式里面的x都是同号,而不象对称方程一正一负.此区别也是判断对称性还是周期性的关键. 同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是.2π,2π,π,当然他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期.如f(x)=sinx t=2π(t=2π/w)但是如果是f(x)=|sinx|的话它的周期就是t=π因为加了绝对值之后y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周t=π. y1=(sinx)^2=(1-cos2x)/2 y2=(cosx)^2=(1+cos2x)/2上面的2个方程t=π(t=2π/w)而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期t=π所以它的周期为t=π 而对于不相同的周期则它的周期为它们各个周期的最小公倍数.如y=sin3πx+cos2πx t1=2/3 t2=1则t=2/3
两个关于函数图象对称性的结论
任何直线都有对称线,就是垂直平分线;任何抛物线,都有对称线:用配方法找到y=a(x-b)^2+c,x=b就是对称线;任何圆都有无数对称线,就是所有的直径;任何椭圆都有两条对称线;任何双曲线都有两条对称线;任何奇次函数,都以圆点为对称点:如:x,x^3,x^5,x^7,x^9,....,sinx,tanx,cscx,cotxetc任何偶次函数,都以y轴为对称轴:如:x^2,x^4,x^6,x^8,....,cosx,secx,(sinx)^2,(tanx)^2,sin(x^2)etc任何奇次多项式函数如y=ax^5+bx^4+cx^3+dx^2+ex+f可能对称于圆点,可能不对称。具体由a、b、c、d、e、f的数值决定。任何偶次多项式函数如y=ax^6+bx^5+cx^4+dx^3+ex^2+fx+g可能对称于圆点,可能不对称。具体由a、b、c、d、e、f、g的数值决定。补充:偶函数乘偶函数=偶函数还是关于y轴对称奇函数乘奇函数=偶函数关于y轴对称奇函数乘偶函数=奇函数关于原点对称
函数对称性的定义是什么?
函数对称性的常用结论及推导过程如下:1、如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。2、如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。3、如果函数f(x)(x∈D)在定义域内有一条对称轴x=a和一个对称中心B(b,0)(a≠b),则函数f(x)是周期函数,且周期T=4|b-a|(不一定为最小正周期)。函数的对称性:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。函数的对称性公式推导:1、对称性f(x+a)=f(b-x)记住此方程式是对称性的一般形式.只要x有一个正一个负。就有对称性.至于对称轴可用吃公式求X=a+b/2。如f(x+3)=f(5_x)X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用。你可以去套用,在此不在举例。对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴。如:一原二次方程f(x)=ax2+bx+c对称轴X=b/2a。原函数与反函数的对称轴是y=x。而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有…(2n+!)90度等等.因为他的定义为R。f(x)=|X|他的对称轴则是X=0。还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了。如f(x-3)=x-3。令t=x-3,则f(t)=t。可见原方程是由初等函数向右移动了3个单位。同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移)。2、至于周期性首先也的从一般形式说起f(x)=f(x+T)。注意此公式里面的X都是同号,而不象对称方程一正一负。此区别也是判断对称性还是周期性的关键。同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是2π,2π,π,当然他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期,如“f(x)=sinX,T=2π(T=2π/W)。但是如果是f(x)=|sinx|的话它的周期就是T=π因为加了绝对值之后Y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周T=π。y1=(sinx)^2=(1-cos2x)/2,y2=(cosx)^2=(1+cos2x)/2,上面的2个方程T=π(T=2π/W),而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期T=π所以它的周期为T=π。而对于不相同的周期则它的周期为它们各个周期的最小公倍数,如:y=sin3πx+cos2πx,T1=2/3,T2=1则T=2/3。
函数对称性的总结是什么?
函数对称性的总结公式是:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。函数的对称性是如果一个函数的图像沿一条直线对折,直线两侧的图像能够完全重合,则称该函数具备对称性中的轴对称,该直线称为该函数的对称轴。中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。函数的对称性公式推导:对称性f(x+a)=f(b-x)记住此方程式是对称性的一般形式.只要x有一个正一个负.就有对称性.至于对称轴可用吃公式求X=a+b/2。如f(x+3)=f(5_x)X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用.你可以去套用,在此不在举例。对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴.如一原二次方程f(x)=ax2+bx+c对称轴X=b/2a。原函数与反函数的对称轴是y=x。
函数对称性公式大总结是什么?
函数对称性公式大总结:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性,例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。对称变换(1)函数y=f(x)的图象关于y轴对称的图像为y=f(-x)。关于x轴对称的图像为y=-f(x);关于原点对称的图像为y=-f(-x)。(2)函数y=f(x)的图象关于x=a对称的图像为y=f(2a-x);关于y=b对称的图像为y=2b-f(x);关于点(a,b)中心对称的图像为y=2b-f(2a-x)。
函数对称性的总结是什么?
函数对称性的总结:y=f(|x|)是偶函数。它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。函数的对称性总结意义:函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决。
函数的对称性吗?
是的。函数的对称性:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。函数的对称性公式推导:1、对称性f(x+a)=f(b-x)记住此方程式是对称性的一般形式。只要x有一个正一个负,就有对称性,至于对称轴可用吃公式求X=a+b/2。如f(x+3)=f(5_x)X=3+5/2=4等等,此公式对于那些未知方程,却知道2方程的关系的都通用。对于已知方程的要求对称轴的,首先记住一些常见的对称方程的对称轴,如一原二次方程f(x)=ax2+bx+c对称轴X=b/2a。原函数与反函数的对称轴是y=x。而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有…(2n+!)90度等等,因为他的定义为R。f(x)=|X|他的对称轴则是X=0。还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了。如f(x-3)=x-3。令t=x-3,则f(t)=t。可见原方程是由初等函数向右移动了3个单位。同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移)。2、至于周期性首先也的从一般形式说起f(x)=f(x+T)。
怎样判断函数的对称
在函数的研究中,我们经常讨论其对称性。对称性可以帮助我们了解函数图像的性质和特点。下面是五个常见的函数对称性结论及其推导:1. 偶函数: 如果一个函数满足f(x) = f(-x)对于任意的x,即关于y轴对称,那么该函数被称为偶函数。2. 奇函数: 如果一个函数满足f(x) = -f(-x)对于任意的x,即关于原点对称,那么该函数被称为奇函数。3. 周期函数: 如果一个函数满足f(x + T) = f(x)对于某个常数T和所有的x,那么该函数被称为周期函数。T被称为函数的周期。4. 对称轴: 如果一个函数存在对称轴,即存在某个实数a,当x=a时,函数图像关于对称轴对称,那么该函数存在对称轴。5. 中心对称: 如果一个函数满足f(a + x) = f(a - x)对于某个实数a和所有的x,即关于直线x=a对称,那么该函数被称为中心对称。这五个结论可以通过图像、函数关系式的变化或定义进行推导。通过观察和分析函数的性质,可以判断函数是否具有对称性及具体的对称性类型。对称性结论的推导有助于我们更深入地理解和研究函数的特点及其图像。
菁优网高中数学什么是函数的对称性
【函数的对称性】是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能够更简捷的使问题得到解决,对称关系同时还充分体现数学之美。1、函数y = f (x)的图象的对称性(自身):(1)定理1:函数y = f (x)的图象关于直线x=(a+b)/2对称: → f (a+x)= f (b-x)→f (a+b-x)= f (x)特殊的有:①函数y = f (x)的图象关于直线x=a对称 →f (a+x)=f (a-x)→f (2a-x)=f (x);②函数y = f (x)的图象关于y轴对称(奇函数)→f (-x)=f (x);③函数y = f (x+a)是偶函数→f (x)关于x=a对称;(2)定理2:函数y = f (x)的图象关于点(a,b)对称: → f (x)=2b- f (2a-x)→f (a+x)+ f (a-x)=2b特殊的有:① 函数y = f (x)的图象关于点(a,0)对称→f (x)=-f (2a-x);② 函数y = f (x)的图象关于原点对称(奇函数) →f (-x)=f (x);③ 函数y = f (x+a)是奇函数 →f (x)关于点(a,0) 对称。(3)定理3:(性质)①若函数y=f (x)的图像有两条铅直对称轴x=a和x=b(a不等于b,那么f(x)为周期函数且2|a-b|是它的一个周期;②若函数y=f (x)的图像有一个对称中心M(m,n)和一条铅直对称轴x=a,那么f(x)为周期函数且4|a-m|为它的一个周期;③若函数y = f (x) 图像同时关于点A(a,c)和点B (b,c)成中心对称(a≠b),则y = f (x)是周期函数,且2|a-b|是其一个周期;④若一个函数的反函数是它本身,那么它的图像关于直线y=x对称。2、两个函数图象的对称性:(1)函数y = f (x)与函数y = f (-x)的图象关于直线x=0(即y轴)对称;(2)函数y = f (mx-a)与函数y = f (b-mx)的图象关于直线x=(a+b)/2m对称;特殊地:y = f (x-a)与函数y = f (a-x)的图象关于直线x=a对称;(3)函数y = f (x)的图象关于直线x=a对称的解析式为y = f (2a-x);(4)函数的y = f (x)图象关于点(a,0)对称的解析式为y = -f (2a-x);(5)函数y = f (x)与a-x = f (a-y)的图像关于直线x +y = a成轴对称。函数y = f (x)与x-a = f (y + a)的图像关于直线x-y = a成轴对称。函数y = f (x)的图像与x = f(y)的图像关于直线x = y 成轴对称。
函数的周期性和对称性口诀是什么?
函数的周期性和对称性口诀是和对称差周期。若f(x+a)=-f(x+b),多一个负号。(x+a)-(x+b)=a-b,周期X2。周期性,T=2|a-b|。若f(x+a)=-f(-x+b),多一个负号。(x+a)+(-x+b)=a+b,轴变中心。对称性,对称中心((a+b)/2,0)。具备性质:1、如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。2、如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。3、如果函数f(x)(x∈D)在定义域内有一条对称轴x=a和一个对称中心B(b, 0)(a≠b),则函数f(x)是周期函数,且周期T=4|b-a|(不一定为最小正周期)。
函数对称性的总结是什么?
函数的对称性:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性。例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。函数的对称性公式推导:1、对称性f(x+a)=f(b-x)记住此方程式是对称性的一般形式.只要x有一个正一个负。就有对称性.至于对称轴可用吃公式求X=a+b/2。如f(x+3)=f(5_x)X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用。你可以去套用,在此不在举例。对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴。如:一原二次方程f(x)=ax2+bx+c对称轴X=b/2a。原函数与反函数的对称轴是y=x。而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有…(2n+!)90度等等.因为他的定义为R。f(x)=|X|他的对称轴则是X=0。还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了。如f(x-3)=x-3。令t=x-3,则f(t)=t。可见原方程是由初等函数向右移动了3个单位。同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移)。2、至于周期性首先也的从一般形式说起f(x)=f(x+T)。注意此公式里面的X都是同号,而不象对称方程一正一负。此区别也是判断对称性还是周期性的关键。同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是2π,2π,π,当然他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期,如“f(x)=sinX,T=2π(T=2π/W)。但是如果是f(x)=|sinx|的话它的周期就是T=π因为加了绝对值之后Y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周T=π。y1=(sinx)^2=(1-cos2x)/2y2=(cosx)^2=(1+cos2x)/2上面的2个方程T=π(T=2π/W)而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期T=π所以它的周期为T=π。而对于不相同的周期则它的周期为它们各个周期的最小公倍数,如:y=sin3πx+cos2πx,T1=2/3,T2=1则T=2/3。
怎么判断函数的对称性?
函数对称性公式大总结:y=f(|x|)是偶函数,它关于y轴对称,y=|f(x)|是把x轴下方的图像对称到x轴的上方,但无法判断是否具备对称性,例如,y=|lnx|没有对称性,而y=|sinx|却有对称性。中心对称:如果一个函数的图像沿一个点旋转180度,所得的图像能与原函数图像完全重合,则称该函数具备对称性中的中心对称,该点称为该函数的对称中心。对称变换(1)函数y=f(x)的图象关于y轴对称的图像为y=f(-x)。关于x轴对称的图像为y=-f(x);关于原点对称的图像为y=-f(-x)。(2)函数y=f(x)的图象关于x=a对称的图像为y=f(2a-x);关于y=b对称的图像为y=2b-f(x);关于点(a,b)中心对称的图像为y=2b-f(2a-x)。
函数的对称性【函数对称性的探究】
函数是中学数学教学的主线,是中学数学的核心内容,也是整个高中数学的基础。函数的性质是竞赛和高考的重点与热点,函数的对称性是函数的一个基本性质,对称关系不仅广泛存在于数学问题之中,而且利用对称性往往能更简捷地使问题得到解决,对称关系还充分体现了数学之美。本文拟通过函数自身的对称性和不同函数之间的对称性这两个方面来探讨函数与对称有关的性质。 一、函数自身的对称性探究 定理1.函数 y = f (x)的图像关于点A (a ,b)对称的充要条件是f (x) + f (2a-x) = 2b 证明:(必要性)设点P(x ,y)是y = f (x)图像上任一点,∵点P( x ,y)关于点A (a ,b)的对称点P‘(2a-x,2b-y)也在y = f (x)图像上,∴ 2b-y = f (2a-x) 即y + f (2a-x)=2b故f (x) + f (2a-x) = 2b,必要性得证。 (充分性)设点P(x0,y0)是y = f (x)图像上任一点,则y0 = f (x0) ∵ f (x) + f (2a-x) =2b∴f (x0) + f (2a-x0) =2b,即2b-y0 = f (2a-x0) 。 故点P‘(2a-x0,2b-y0)也在y=f(x) 图像上,而点P与点P‘关于点A (a ,b)对称,充分性得征。 推论:函数 y = f (x)的图像关于原点O对称的充要条件是f (x) + f (-x) = 0定理2. 函数 y = f (x)的图像关于直线x = a对称的充要条件是f (a +x) = f (a-x) 即f (x) = f (2a-x) (证明留给读者) 推论:函数 y = f (x)的图像关于y轴对称的充要条件是f (x) = f (-x) 定理3. ①若函数y = f (x) 图像同时关于点A (a ,c)和点B (b ,c)成中心对称(a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。 ②若函数y = f (x) 图像同时关于直线x = a 和直线x = b成轴对称 (a≠b),则y = f (x)是周期函数,且2| a-b|是其一个周期。 ③若函数y = f (x)图像既关于点A (a ,c) 成中心对称又关于直线x =b成轴对称(a≠b),则y = f (x)是周期函数,且4| a-b|是其一个周期。 ①②的证明留给读者,以下给出③的证明: ∵函数y = f (x)图像既关于点A (a ,c) 成中心对称, ∴f (x) + f (2a-x) =2c,用2b-x代x得: f (2b-x) + f [2a-(2b-x) ] =2c………………(*) 又∵函数y = f (x)图像直线x =b成轴对称, ∴ f (2b-x) = f (x)代入(*)得: f (x) = 2c-f [2(a-b) + x]…………(**),用2(a-b)-x代x得 f [2 (a-b)+ x] = 2c-f [4(a-b) + x]代入(**)得: f (x) = f [4(a-b) + x],故y = f (x)是周期函数,且4| a-b|是其一个周期。 二、不同函数对称性的探究 定理4. 函数y = f (x)与y = 2b-f (2a-x)的图像关于点A (a ,b)成中心对称。定理5. ①函数y = f (x)与y = f (2a-x)的图像关于直线x = a成轴对称。 ②函数y = f (x)与a-x = f (a-y)的图像关于直线x +y = a成轴对称。 ③函数y = f (x)与x-a = f (y + a)的图像关于直线x-y = a成轴对称。 定理4与定理5中的①②证明留给读者,现证定理5中的③ 设点P(x0 ,y0)是y = f (x)图像上任一点,则y0 = f (x0)。记点P( x ,y)关于直线x-y = a的轴对称点为P‘(x1, y1),则x1=a+y0 , y1= x0-a,∴x0=a+y1 , y0= x1-a 代入y0 = f (x0)之中得x1-a = f (a + y1)∴点P‘(x1, y1)在函数x-a = f (y + a)的图像上。 同理可证:函数x-a = f (y + a)的图像上任一点关于直线x-y = a的轴对称点也在函数y = f (x)的图像上。故定理5中的③成立。 三、三角函数图像的对称性列表 注:上表中k∈Z 四、函数对称性应用举例 例1:定义在R上的非常数函数满足:f (10+x)为偶函数,且f (5-x) = f (5+x),则f (x)一定是( ) (A)是偶函数,也是周期函数 (B)是偶函数,但不是周期函数 (C)是奇函数,也是周期函数 (D)是奇函数,但不是周期函数 解:∵f (10+x)为偶函数,∴f (10+x) = f (10-x). ∴f (x)有两条对称轴 x = 5与x =10 ,因此f (x)是以10为其一个周期的周期函数, ∴x =0即y轴也是f (x)的对称轴,因此f (x)还是一个偶函数。 故选(A) 例2:设定义域为R的函数y = f (x)、y = g(x)都有反函数,并且f(x-1)和g-1(x-2)函数的图像关于直线y = x对称,若g(5) = 1999,那么f(4)=( )。 (A) 1999; (B)2000; (C)2001; (D)2002。 推论:函数y = f (x)的图像与x = f (y)的图像关于直线x = y 成轴对称。 解:∵y = f(x-1)和y = g-1(x-2)函数的图像关于直线y = x对称, ∴y = g-1(x-2) 反函数是y = f(x-1),而y = g-1(x-2)的反函数是:y = 2 + g(x), ∴f(x-1) = 2 + g(x), ∴有f(5-1) = 2 + g(5)=2001 故f(4) = 2001,应选(C)
什么是对称函数?如何判断函数的对称性?
函数对称性的公式总结如下:1. 奇函数的对称性:- f(-x) = - f(x)- 奇函数关于原点对称,即图像关于原点旋转180度后重合。2. 偶函数的对称性:- f(-x) = f(x)- 偶函数关于y轴对称,即图像关于y轴翻折后重合。3. 周期函数的对称性:- f(x + T) = f(x),其中T为正周期- 周期函数具有平移对称性,在每个周期内的图像是相似的。4. 中心对称函数的对称性:- f(-x) = f(x),且f(0) = 0- 中心对称函数关于原点对称,即图像关于原点旋转180度后重合,并且通过原点。以上是常见对称性的公式总结。这些对称性公式可以用于判断和分析函数的对称性,从而更好地理解函数的性质和图像。当我们能够确定函数的对称性时,可以简化对函数的理解和计算。
如何判断函数的关于哪些点对称?
①知识点定义来源&讲解:函数关于点的对称性是函数图像在某个点处表现出左右对称的性质。当一个函数关于某点对称时,该点被称为对称中心。以对称中心为中心,函数图像在两侧是一样的,即在关于对称中心的左右两侧的函数值相等。函数关于点对称的概念源自数学中对对称性的研究。在函数图像的研究中,研究函数的对称性有助于理解和描述函数的特征。②知识点运用:函数关于点对称的概念常用于函数图像的研究、图形的绘制和问题的求解。通过识别函数关于点对称的特点,可以简化函数的表达式、分析函数图像的性质、研究函数的变化规律等。对称性有助于简化问题,减少运算量,并提供更直观的几何解释。③知识点例题讲解:例1:判断函数 y = x^2 是否关于原点对称。解析:原点 (0, 0) 是函数 y = x^2 的一个解。将函数的自变量取负值,即计算函数在 (-x) 时的函数值,可以发现 y = (-x)^2 = x^2,即在原点两侧的函数值相等。因此,函数 y = x^2 关于原点对称。例2:判断函数 y = sin(x) 是否关于 y 轴对称。解析:将函数的自变量取负值,即计算函数在 (-x) 时的函数值,可以发现 y = sin(-x) = -sin(x)。即在 y 轴两侧的函数值相反。因此,函数 y = sin(x) 不关于 y 轴对称。例3:判断函数 y = 1/x 是否关于直线 y = x 对称。解析:将函数的自变量和因变量互换,即将 x 替换为 y,y 替换为 x,可以得到 x = 1/y。这相当于将函数图像绕直线 y = x 进行对称变换。因此,函数 y = 1/x 关于直线 y = x 对称。通过以上例题,可以展示函数关于点对称的概念,并在具体的函数中进行应用和判断。
函数的对称性?
1)如果一函数关于轴x=T(T为常数)对称,则有f(x)=f(2T-x)或者f(x+T)=f(T-x)。这个用解析几何来或者用代数来解释都很简单,也可以当作是证明。一函数关于轴x=T(T为常数)对称,就是说作直线y=Y(Y为f(x)值域内任意常数),与f(x)相交两点A(a,Y)和B(b,Y),与x=T相交于C(T,Y),则C为AB的中点。可得a=2T-b,或者a+T=T-x。由直线y=Y在f(x)值域内的任意性,可知f(x)=f(2T-x)或者f(x+T)=f(T-x)。一函数关于轴x=T(T为常数)对称,取任意一点P(x,f(x)),函数上必存在与其关于x=T的对称的点Q(q,f(q)),即点(T,f(x))为PQ的中点。用中点公式可得q=2T-x,f(q)=f(x),即f(x)=f(2T-x)。由P点的任意性可知该式在定义区成立。类似的取P(x+T,f(x+T)),同样道理可证明f(x+T)=f(T-x)。2)若一函数f(x)关于点O(a,b)中心对称,则有f(x)+f(2a-x)=2b或者f(a+x)+f(a-x)=2b。任取P(x,f(x)),则必定可以在f(x)上找到点Q(q,f(q))且O(a,b)为PQ的中点。q+x=2a 且f(q)+f(x)=2b,用x表示q,可得f(x)+f(2a-x)=2b。类似设这个人任意点为P(x+a,f(x+a)),同样方法可得f(a+x)+f(a-x)=2b。解析几何的方法和代数的方法其实是同一个本质,只是两种不同的叙述方法,只要理解透彻定义,加上一点代数的技巧或解析几何的直观,这类问题是很容易理解和证明的。
函数的周期性和对称性口诀是什么?
函数的周期性和对称性口诀是和对称差周期。若f(x+a)=-f(x+b),多一个负号。(x+a)-(x+b)=a-b,周期X2。周期性,T=2|a-b|。若f(x+a)=-f(-x+b),多一个负号。(x+a)+(-x+b)=a+b,轴变中心。对称性,对称中心((a+b)/2,0)。性质:1、如果函数f(x)(x∈D)在定义域内有两条对称轴x=a,x=b则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。2、如果函数f(x)(x∈D)在定义域内有两个对称中心A(a,0),B(b,0)则函数f(x)是周期函数,且周期T=2|b-a|(不一定为最小正周期)。3、如果函数f(x)(x∈D)在定义域内有一条对称轴x=a和一个对称中心B(b, 0)(a≠b),则函数f(x)是周期函数,且周期T=4|b-a|(不一定为最小正周期)。
如何判断函数的对称性?
函数对称性的公式总结如下:1. 奇函数的对称性:- f(-x) = - f(x)- 奇函数关于原点对称,即图像关于原点旋转180度后重合。2. 偶函数的对称性:- f(-x) = f(x)- 偶函数关于y轴对称,即图像关于y轴翻折后重合。3. 周期函数的对称性:- f(x + T) = f(x),其中T为正周期- 周期函数具有平移对称性,在每个周期内的图像是相似的。4. 中心对称函数的对称性:- f(-x) = f(x),且f(0) = 0- 中心对称函数关于原点对称,即图像关于原点旋转180度后重合,并且通过原点。以上是常见对称性的公式总结。这些对称性公式可以用于判断和分析函数的对称性,从而更好地理解函数的性质和图像。当我们能够确定函数的对称性时,可以简化对函数的理解和计算。
如何判断函数f( x)对称性
类似的条件,一般都能得到函数f(x)的对称性结论。供参考,请笑纳。又如:注意:奇偶性只作用于x.即:解析式中x变成-x后,对应函数值之间或相等或互为相反数。
原函数与导函数的对称性之间的关系
原函数与导函数的对称性之间的关系如下:若函数f(x)连续且可导,且导函数f′(x)图象关于点(a,0)对称,则函数f(x)图象关于直线x=a对称。若函数f(x)连续且可导,且导函数f′(x)图象关于直线x=a对称,则函数f(x)图象关于点(a,f(a))对称。函数(function),数学术语。其定义通常分为传统定义和近代定义,函数的两个定义本质是相同的,只是叙述概念的出发点不同,传统定义是从运动变化的观点出发,而近代定义是从集合、映射的观点出发。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。函数,最早由中国清朝数学家李善兰翻译,出于其著作《代数学》。之所以这么翻译,他给出的原因是“凡此变数中函彼变数者,则此为彼之函数”,也即函数指一个量随着另一个量的变化而变化,或者说一个量中包含另一个量。
函数的对称性公式推导
找的多是没有用的,关键是你要掌握原理.1.对称性f(x+a)=f(b_x)记住此方程式是对称性的一般形式.只要x有一个正一个负.就有对称性.至于对称轴可用吃公式求X=a+b/2如f(x+3)=f(5_x)X=3+5/2=4等等.此公式对于那些未知方程,却知道2方程的关系的都通用.你可以去套用,在此不在举例.对于已知方程的要求对称轴的首先你的记住一些常见的对称方程的对称轴.如一原二次方程f(x)=ax2+bx+c对称轴X=b/2a原函数与反函数的对称轴是y=x.而对于一些函数如果不加限制条件就不好说它们的对称轴如三角函数,它的对称轴就不仅仅是X=90还有...(2n+!)90度等等.因为他的定义为R.f(x)=|X|他的对称轴则是X=0,还应该注意的是一些由简单函数平移后要求的对称轴就只要把它反原成出等的以后在加上平移的数量就可以了.如f(x-3)=x-3令t=x-3则f(t)=t可见原方程是由初等函数向右移动了3个单位.同样对称轴也向右移3个单位X=3(记住平移是左加右减的形式,如本题的X-3说明向由移)2,至于周期性首先也的从一般形式说起f(x)=f(x+T)注意此公式里面的X都是同号,而不象对称方程一正一负.此区别也是判断对称性还是周期性的关键.同样要记住一些常见的周期函数如三角函数什么正弦函数,余弦函数正切函数等.当然它们的最小周期分别是.2π,2π,π,当然他们的周期不仅仅是这点只要是它们最小周期的正数倍都可以是题目的周期.如f(x)=sinX T=2π(T=2π/W)但是如果是f(x)=|sinx|的话它的周期就是T=π因为加了绝对值之后Y轴下面的图形全被翻到上面去了,由图不难看出起最小对称周T=π.y1=(sinx)^2=(1-cos2x)/2y2=(cosx)^2=(1+cos2x)/2上面的2个方程T=π(T=2π/W)而对于≥2个周期函数方程的加减复合方程,如果他们的周期相同,则它的周期还是相同的周期.如y=sin2x+cos2x因为他们有一个公共周期T=π所以它的周期为T=π而对于不相同的周期则它的周期为它们各个周期的最小公倍数.如y=sin3πx+cos2πx T1=2/3 T2=1则T=2/3
函数f(x)在x0连续的条件是什么?
函数f(x)在x0连续,当且仅当f(x)满足以下三个条件:1、f(x)在x0及其左右近旁有定义。2、f(x)在x0的极限存在。3、f(x)在x0的极限值与函数值f(x0)相等。假如一个函数在某一点连续,说明在这一点上有定义,并且这个函数在该点的极限值就等于函数值。此函数在这点上的极限存在,就是函数在此点上的左右极限存在,而且相等。扩展资料:函数计算注意事项:计算机常用的函数公式包括RANK函数、COUNTIF函数、IF函数、ABS函数、AND函数、AVERAGE函数、COLUMN 函数等。SUMIF函数的语法结构是:=SUMIF(条件范围,条件,求和范围)。其中求和范围可以省略,如果省略,默认和条件范围一致。主要作用是对符合条件的数进行求和。参考资料来源:百度百科-函数
函数连续的条件
函数连续的定义:lim(x->a)f(x)=f(a)是函数连续充要条件。在这点函数可导是连续的充分条件,不是必要条件,例如绝对值函数f(x)=|x|在x=0处连续但不可导1、连续性定义:若函数f(x)在x0有定义,且极限与函数值相等,则函数在x0连续2、充分条件:若函数f(x)在x0可导或可微(或者更强的条件),则函数在x0连续3、必要条件:若函数f(x)在x0无定义、或无极限、或极限不等于函数值,则在x0不连续4、观察图像(这个不严谨,只适用直观判断)5、记住一些基本初等函数的性质,大部分初等函数在定义域内都是连续的6、连续函数的性质:连续函数的加减乘,复合函数等都是连续的
函数f(x)在x0连续的条件是什么?
函数f(x)在x0连续,当且仅当f(x)满足以下三个条件:1、f(x)在x0及其左右近旁有定义。2、f(x)在x0的极限存在。3、f(x)在x0的极限值与函数值f(x0)相等。对于一元函数有,可微<=>可导=>连续=>可积。对于多元函数,不存在可导的概念,只有偏导数存在,函数在某处可微等价于在该处沿所有方向的方向导数存在,仅仅保证偏导数存在不一定可微,因此有:可微=>偏导数存在=>连续=>可积。可导与连续的关系:可导必连续,连续不一定可导。可微与连续的关系:可微与可导是一样的。可积与连续的关系:可积不一定连续,连续必定可积。可导与可积的关系:可导一般可积,可积推不出一定可导。
函数在某点连续的三个条件是什么?
如果一个函数在某一点连续,那么可以说明:1、此函数在这一点有定义。2、此函数在这一点的极限存在,即函数在该点的左右极限存在并且相等。3、此函数在该点的极限值等于它的函数值。扩展资料函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。对于这种现象,我们说因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。参考资料百度百科-连续函数
判断函数连续性的三个条件
判断函数连续性的三个条件:函数f(x)在点x的某邻域内有定义,函数在此点的极限值存在,这个极限等于函数值f(x)。连续函数是指函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。对于连续性,在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的。这种现象在函数关系上的反映,就是函数的连续性。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。对于这种现象,因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。函数的定义域和值域:输入值的集合X被称为f的定义域;可能的输出值的集合Y被称为f的值域。函数的值域是指定义域中全部元素通过映射f得到的实际输出值的集合。注意,把对应域称作值域是不正确的,函数的值域是函数的对应域的子集。计算机科学中,参数和返回值的数据类型分别确定了子程序的定义域和对应域。因此定义域和对应域是函数一开始就确定的强制进行约束。另一方面,值域是和实际的实现有关。
如何判断一个函数是否连续?
1、连续性定义:若函数f(x)在x0有定义,且极限与函数值相等,则函数在x0连续2、充分条件:若函数f(x)在x0可导或可微(或者更强的条件),则函数在x0连续3、必要条件:若函数f(x)在x0无定义、或无极限、或极限不等于函数值,则在x0不连续4、观察图像(这个不严谨,只适用直观判断)5、记住一些基本初等函数的性质,大部分初等函数在定义域内都是连续的6、连续函数的性质:连续函数的加减乘,复合函数等都是连续的
函数在某点连续的条件是什么?
函数在某点连续的条件如下:1. 函数在该点存在。2. 函数在该点的左极限和右极限存在,并且与函数在该点处的函数值相等。即 lim(x→a-) f(x) = f(a) 和 lim(x→a+) f(x) = f(a)。简单来说,要判断一个函数在某点是否连续,需要确保函数在该点存在,并且左右极限存在且与函数值相等。如果上述条件都满足,则函数在该点是连续的。在某个特定点处不连续并不意味着整个函数都是不连续的。一个函数可以在某些点处不连续,但在其他点处是连续的。如何判断函数在某点连续要判断函数在某点是否连续,可以按照以下步骤进行:1. 查看函数在该点是否存在。确保函数在该点有定义,即函数在该点处有明确定义的函数值。2. 计算函数在该点的左极限和右极限。左极限表示当自变量趋近于该点时,函数的取值趋近于该点的左侧(小于该点)的极限值。右极限表示当自变量趋近于该点时,函数的取值趋近于该点的右侧(大于该点)的极限值。3. 将左极限、右极限与函数在该点处的函数值进行比较。如果函数在该点的左极限、右极限都存在,并且与函数在该点处的函数值相等,即 lim(x→a-) f(x) = f(a) 且 lim(x→a+) f(x) = f(a),则函数在该点连续。如果函数在该点的左极限、右极限存在,但与函数在该点处的函数值不相等,则函数在该点不连续。这里的函数连续性的定义是基于极限的概念。可以通过计算极限来判断函数在某点处的连续性。然而,在某个特定点处不连续并不意味着整个函数都是不连续的。一个函数可以在某些点处不连续,但在其他点处是连续的。函数在某点连续的意义函数在某点连续的意义是指函数在该点的数值与其邻近点的数值之间没有突变或断裂。具体而言,函数在某点连续表示在该点的邻域范围内,函数的数值变化平滑、连贯,没有跳跃或间断。函数在某点连续的意义可以归结为以下几个方面:1.无间断函数在某点连续意味着在该点的函数值与邻近点的函数值之间没有突变或断裂。函数在该点存在且符合极限条件,没有出现间断的情况。2. 光滑性连续函数在某点处光滑,表示函数图像在该点附近没有断崖或尖点。曲线在该点处的切线存在且连续,没有出现突然改变的情况。3. 极限相等连续函数在该点的左极限和右极限都存在,并且与函数在该点处的函数值相等。即 lim(x→a-) f(x) = f(a) 和 lim(x→a+) f(x) = f(a)。这表明函数在该点处的数值可以通过从左侧或右侧逼近该点而得到。函数的连续性是分析函数性质以及进行微积分的基础。在实际应用中,连续函数的性质使得我们可以进行更精确的计算和推导,并有助于建立数学模型来描述自然界中的现象。函数在某点连续的例题下面是一个函数在某点连续的例题:考虑函数 f(x) = 2x + 3。我们要判断函数 f(x) = 2x + 3 在 x = 1 处是否连续。解法:首先,我们检查函数在 x = 1 处是否有定义。由于函数表达式对于所有实数都有定义,因此函数在 x = 1 处有定义。接下来,我们计算函数在 x = 1 处的左极限和右极限。左极限表示当自变量趋近于 x = 1 时,函数取值趋近于 x = 1 的左侧的极限值。右极限表示当自变量趋近于 x = 1 时,函数取值趋近于 x = 1 的右侧的极限值。计算左极限:lim(x→1-) f(x) = lim(x→1-) (2x + 3) = 2(1) + 3 = 5计算右极限:lim(x→1+) f(x) = lim(x→1+) (2x + 3) = 2(1) + 3 = 5然后,我们比较左极限、右极限和函数在 x = 1 处的函数值。f(1) = 2(1) + 3 = 5由于左极限、右极限和函数值相等,即 lim(x→1-) f(x) = lim(x→1+) f(x) = f(1) = 5,因此函数 f(x) = 2x + 3 在 x = 1 处连续。这是一个简单的例子,函数在 x = 1 处的连续性可以通过计算极限来确定。如果左极限、右极限存在且与函数在该点处的函数值相等,那么函数在该点连续。
第二个问题:函数连续性的判定条件是什么?
函数f(x)在x0连续,当且仅当f(x)满足以下三个条件:1、f(x)在x0及其左右近旁有定义。2、f(x)在x0的极限存在。3、f(x)在x0的极限值与函数值f(x0)相等。一致连续性说明:闭区间上的连续函数在该区间上一致连续。所谓一致连续是指,对任意ε>0(无论其多么小),总存在正数δ,当区间I上任意两个数x1、x2满足|x1-x2|<δ时,有|f(x1)-f(x2)|<ε,就称f(x)在I上是一致连续的。证明:利用有限覆盖定理:如果H是闭区间[a,b]的一个无限开覆盖,那么能从H中选择有限个开区间来覆盖[a,b]。详细证法参考相应词条。
在定义域内,函数连续的充要条件是什么?
一定连续。这个可以从任意一本高等数学或微积分的大学数学教材中找到他的证明。函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。对于这种现象,我们说因变量关于自变量是连续变化的,可用极限给出严格描述:设函数y=f(x)在x0点附近有定义,如果有lim(x->x0),f(x)=f(x0),则称函数f在x点连续。如果定义在区间上的函数在每一点x∈I都连续,则说f在上连续。此时,它在直角坐标系中的图像是一条没有断裂的连续曲线。设变量x从它的一个初值x1变到终值x2,终值与初值的差x2-x1就叫做变量x的增量,记为:x即:x=x2-x1 增量x可正可负。也就是说,改变量可以是正的,也可以是负的。
函数连续的条件
函数连续的定义:lim(x->a)f(x)=f(a)是函数连续充要条件. 在这点函数可导是连续的充分条件,不是必要条件,例如绝对值函数f(x)=|x|在x=0处连续但不可导 1、连续性定义:若函数f(x)在x0有定义,且极限与函数值相等,则函数在x0连续 2、充分条件:若函数f(x)在x0可导或可微(或者更强的条件),则函数在x0连续 3、必要条件:若函数f(x)在x0无定义、或无极限、或极限不等于函数值,则在x0不连续 4、观察图像(这个不严谨,只适用直观判断) 5、记住一些基本初等函数的性质,大部分初等函数在定义域内都是连续的 6、连续函数的性质:连续函数的加减乘,复合函数等都是连续的
函数连续的三个条件 简述函数在一点连续必须满足的三个条件
1、函数f(x)在点x的某邻域内有定义。 2、函数在此点的极限值存在。 3、这个极限等于函数值f(x)。 4、在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。设f是一个从实数集的子集射到 的函数:f在中的某个点c处是连续的当且仅当以下的两个条件满足:f在点c上有定义。c是其中的一个聚点,并且无论自变量x在中以什么方式接近c,f(x) 的极限都存在且等于f(c)。我们称函数到处连续或处处连续,或者简单的连续,如果它在其定义域中的任意点处都连续。更一般地,我们说一个函数在它定义域的子集上是连续的当它在这个子集的每一点处都连续。不用极限的概念,也可以用下面所谓的方法来定义实值函数的连续性。仍然考虑函数。假设c是f的定义域中的元素。函数f被称为是在c点连续当且仅当以下条件成立: 对于任意的正实数,存在一个正实数δ> 0 使得对于任意定义域中的δ,只要x满足c - δ< x < c + δ,就有成立。
函数连续的充要条件
函数连续的充要条件有:1、f(x)在x0及其左右近旁有定义。2、f(x)在x0的极限存在。3、f(x)在x0的极限值与函数值f(x0)相等。函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。对于这种现象,我们说因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。
函数连续性如何证明?
证明函数连续的方法有三种,分别是定义法、局部性质发、柯西收敛准则。1、定义法直接根据函数连续性的定义进行证明,对于任意给定的ε>0,存在一个δ>0,使得当|x-x0|<δ时,|f(x)-f(x0)|<ε,则函数f(x)在点x0处连续。2、局部性质法利用函数在未知一个点的局部性质来证明函数连续性。函数在未知一个点处可导,该函数在该点处必连续,函数在未知一个点处的左右极限相等且等于该点的函数值,那函数在该点处连续。3、柯西收敛准则对于实数序列,存在一个正数ε,使得对于任意正整数N,都存在一个正整数n>N,当n>N时,|xn-xN|<ε,则序列{xn}收敛,利用这个准则可以证明一些基于序列的函数连续性。证明函数连续的条件、作用和性质1、函数连续的条件函数连续的条件是函数在某一点处的极限值等于函数值。具体来说,函数f(x)在点x0处连续,对于任意给定的ε>0,存在一个正整数δ,使得当|x"-x0|<δ时,|f(x")-f(x0)|<ε恒成立。这个条件可以用来判断一个函数是否在某一点处连续。2、函数连续的作用函数连续的作用有很多,其中最重要的是可以保证函数在某一点处的极限值等于函数值。这意味着,在计算函数的极限时,函数在这一点处连续,那么可以直接使用函数的值来计算极限,而不用使用其他复杂的计算方法。3、连续函数的性质连续函数的性质有很多,最重要的是在一点处的极限值等于函数值。连续函数还具有一些其他性质,在一点处的导数等于函数在该点处的切线斜率,以及在某一点处的积分等于函数在该点处的面积。这些性质可以用来研究函数的性质和行为。
函数连续的条件是什么?
一定连续。这个可以从任意一本高等数学或微积分的大学数学教材中找到他的证明。函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。对于这种现象,我们说因变量关于自变量是连续变化的,可用极限给出严格描述:设函数y=f(x)在x0点附近有定义,如果有lim(x->x0),f(x)=f(x0),则称函数f在x点连续。如果定义在区间上的函数在每一点x∈I都连续,则说f在上连续。此时,它在直角坐标系中的图像是一条没有断裂的连续曲线。设变量x从它的一个初值x1变到终值x2,终值与初值的差x2-x1就叫做变量x的增量,记为:x即:x=x2-x1 增量x可正可负。也就是说,改变量可以是正的,也可以是负的。
函数连续是极限存在的什么条件,在某点连续是极限存在的什么条件
1.连续是极限存在的必要非充分条件,对于连续性,在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的。 2.这种现象在函数关系上的反映,就是函数的连续性。 3.函数连续的法则:在某点连续的有限个函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数。 4.连续单调递增(递减)函数的反函数,也连续单调递增(递减)。 5.连续函数的复合函数是连续的。
函数连续的充要条件
函数f(x)在x0连续,当且仅当f(x)满足以下三个条件: 1)f(x)在x0及其左右近旁有定义 2)f(x)在x0的极限存在 3)f(x)在x0的极限值与函数值f(x0)相等
证明函数连续的条件是什么?
证明函数连续的条件:在开区间,左区间右连续,右区间左连续,在整个定义区间函数是连续的。函数连续:函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。对于这种现象,说因变量关于 自变量是连续变化的,连续函数在 直角坐标系中的图像是一条没有断裂的连续曲线。函数的近代定义是给定一个数集A,假设其中的元素为x,对A中的元素x施加对应法则f,记作f(x),得到另一数集B,假设B中的元素为y,则y与x之间的等量关系可以用y=f(x)表示,函数概念含有三个要素:定义域A、值域B和对应法则f。其中核心是对应法则f,它是函数关系的本质特征。
函数连续的充要条件是什么?
函数连续的定义:lim(x->a)f(x)=f(a)是函数连续充要条件。在这点函数可导是连续的充分条件,不是必要条件,例如绝对值函数f(x)=|x|在x=0处连续但不可导。
函数f( x)在x0连续的条件是什么?
函数f(x)在x0连续,当且仅当f(x)满足以下三个条件:①f(x)在x0及其左右近旁有定义;②f(x)在x0的极限存在;③f(x)在x0的极限值与函数值f(x0)相等。扩展资料:间断点如果函数在点处不连续,则称在点处间断,并把称为的间断点。
函数在某点连续的条件是什么?
函数在某点连续的条件如下:1. 函数在该点存在。2. 函数在该点的左极限和右极限存在,并且与函数在该点处的函数值相等。即 lim(x→a-) f(x) = f(a) 和 lim(x→a+) f(x) = f(a)。简单来说,要判断一个函数在某点是否连续,需要确保函数在该点存在,并且左右极限存在且与函数值相等。如果上述条件都满足,则函数在该点是连续的。在某个特定点处不连续并不意味着整个函数都是不连续的。一个函数可以在某些点处不连续,但在其他点处是连续的。如何判断函数在某点连续要判断函数在某点是否连续,可以按照以下步骤进行:1. 查看函数在该点是否存在。确保函数在该点有定义,即函数在该点处有明确定义的函数值。2. 计算函数在该点的左极限和右极限。左极限表示当自变量趋近于该点时,函数的取值趋近于该点的左侧(小于该点)的极限值。右极限表示当自变量趋近于该点时,函数的取值趋近于该点的右侧(大于该点)的极限值。3. 将左极限、右极限与函数在该点处的函数值进行比较。如果函数在该点的左极限、右极限都存在,并且与函数在该点处的函数值相等,即 lim(x→a-) f(x) = f(a) 且 lim(x→a+) f(x) = f(a),则函数在该点连续。如果函数在该点的左极限、右极限存在,但与函数在该点处的函数值不相等,则函数在该点不连续。这里的函数连续性的定义是基于极限的概念。可以通过计算极限来判断函数在某点处的连续性。然而,在某个特定点处不连续并不意味着整个函数都是不连续的。一个函数可以在某些点处不连续,但在其他点处是连续的。函数在某点连续的意义函数在某点连续的意义是指函数在该点的数值与其邻近点的数值之间没有突变或断裂。具体而言,函数在某点连续表示在该点的邻域范围内,函数的数值变化平滑、连贯,没有跳跃或间断。函数在某点连续的意义可以归结为以下几个方面:1.无间断函数在某点连续意味着在该点的函数值与邻近点的函数值之间没有突变或断裂。函数在该点存在且符合极限条件,没有出现间断的情况。2. 光滑性连续函数在某点处光滑,表示函数图像在该点附近没有断崖或尖点。曲线在该点处的切线存在且连续,没有出现突然改变的情况。3. 极限相等连续函数在该点的左极限和右极限都存在,并且与函数在该点处的函数值相等。即 lim(x→a-) f(x) = f(a) 和 lim(x→a+) f(x) = f(a)。这表明函数在该点处的数值可以通过从左侧或右侧逼近该点而得到。函数的连续性是分析函数性质以及进行微积分的基础。在实际应用中,连续函数的性质使得我们可以进行更精确的计算和推导,并有助于建立数学模型来描述自然界中的现象。函数在某点连续的例题下面是一个函数在某点连续的例题:考虑函数 f(x) = 2x + 3。我们要判断函数 f(x) = 2x + 3 在 x = 1 处是否连续。解法:首先,我们检查函数在 x = 1 处是否有定义。由于函数表达式对于所有实数都有定义,因此函数在 x = 1 处有定义。接下来,我们计算函数在 x = 1 处的左极限和右极限。左极限表示当自变量趋近于 x = 1 时,函数取值趋近于 x = 1 的左侧的极限值。右极限表示当自变量趋近于 x = 1 时,函数取值趋近于 x = 1 的右侧的极限值。计算左极限:lim(x→1-) f(x) = lim(x→1-) (2x + 3) = 2(1) + 3 = 5计算右极限:lim(x→1+) f(x) = lim(x→1+) (2x + 3) = 2(1) + 3 = 5然后,我们比较左极限、右极限和函数在 x = 1 处的函数值。f(1) = 2(1) + 3 = 5由于左极限、右极限和函数值相等,即 lim(x→1-) f(x) = lim(x→1+) f(x) = f(1) = 5,因此函数 f(x) = 2x + 3 在 x = 1 处连续。这是一个简单的例子,函数在 x = 1 处的连续性可以通过计算极限来确定。如果左极限、右极限存在且与函数在该点处的函数值相等,那么函数在该点连续。
如何理解函数连续的条件?
首先是函数在x0处连续的充要条件:也就是说f(x)在x0处连续需要:(1)f(x)在x0处的极限存在;(2)x0处的极限等于函数值。如果在定义域(a,b)内所有的x0处上式均成立,就可以判断函数f(x)在(a,b)内连续。在数学中,连续是函数的一种属性。直观上来说,连续的函数就是当输入值的变化足够小的时候,输出的变化也会随之足够小的函数。如果输入值的某种微小的变化会产生输出值的一个突然的跳跃甚至无法定义,则这个函数被称为是不连续的函数(或者说具有不连续性)。扩展资料:所有多项式函数都是连续的。各类初等函数,如指数函数、对数函数、平方根函数与三角函数在它们的定义域上也是连续的函数。绝对值函数也是连续的。定义在非零实数上的倒数函数f= 1/x是连续的。但是如果函数的定义域扩张到全体实数,那么无论函数在零点取任何值,扩张后的函数都不是连续的。非连续函数的一个例子是分段定义的函数。例如定义f为:f(x) = 1如果x> 0,f(x) = 0如果x≤ 0。取ε = 1/2,不存在x=0的δ-邻域使所有f(x)的值在f(0)的ε邻域内。直觉上我们可以将这种不连续点看做函数值的突然跳跃。另一个不连续函数的例子为符号函数。参考资料来源:百度百科-连续
简述函数在一点连续必须满足的三个条件
f(x)满足 (1)f(x)在x0的某领域内有定义; (2)x->x0,limf(x)存在; (3)x->x0,limf(x)=f(x0) 称f(x)在x=x0处连续
函数连续的充要条件二元函数连续的充要条件
判断函数f在x0点处连续,当且仅当f满足以下三个充要条件:1、f在x0及其左右近旁有定义。2、f在x0的极限存在。3、f在x0的极限值与函数值f相等。函数y=f当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。对于这种现象,我们说因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。法则:定理一在某点连续的有限个函数经有限次和、差、积、商运算,结果仍是一个在该点连续的函数。定理二连续单调递增函数的反函数,也连续单调递增。定理三连续函数的复合函数是连续的。这些性质都可以从连续的定义以及极限的相关性质中得出。
简述函数在一点连续必须满足的三个条件
函数f(x)在点x处连续,必须同时满足以下三个条件:① 函数f(x)在点x的某邻域内有定义,② 函数在此点的极限值存在,③ 这个极限等于函数值f(x) .
怎样判断一个函数是连续函数呢?
函数连续的定义:lim(x->a)f(x)=f(a)是函数连续充要条件。在这点函数可导是连续的充分条件,不是必要条件,例如绝对值函数f(x)=|x|在x=0处连续但不可导1、连续性定义:若函数f(x)在x0有定义,且极限与函数值相等,则函数在x0连续2、充分条件:若函数f(x)在x0可导或可微(或者更强的条件),则函数在x0连续3、必要条件:若函数f(x)在x0无定义、或无极限、或极限不等于函数值,则在x0不连续4、观察图像(这个不严谨,只适用直观判断)5、记住一些基本初等函数的性质,大部分初等函数在定义域内都是连续的6、连续函数的性质:连续函数的加减乘,复合函数等都是连续的
如何判断一个函数连续?
连续的条件就是函数连续的条件,如下:1、若函数f(x)在x0有定义,且极限与函数值相等。则函数在x0连续。2、充分条件:若函数f(x)在x0可导或可微(或者更强的条件),则函数在x0连续。3、必要条件:若函数f(x)在x0无定义、或无极限、或极限不等于函数值,则在x0不连续。相关定理定理一:在某点连续的有限个函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数。定理二:连续单调递增(递减)函数的反函数,也连续单调递增(递减)。定理三:连续函数的复合函数是连续的。这些性质都可以从连续的定义以及极限的相关性质中得出。
函数在一个闭区间内连续是有界的必要条件吗
函数在一个闭区间内连续是有界的充分非必要条件。闭区间内连续必有界,有界不一定要求闭区间内连续。反例很多,比如一个函数在0点取1,其余地方取0,在闭区间[-1,1]有界但不连续。对于连续性,在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的。这种现象在函数关系上的反映,就是函数的连续性。扩展资料:在函数极限的定义中曾经强调过,当x→x0时f(x)有没有极限,与f(x)在点x0处是否有定义并无关系。但由于现在函数在x0处连续,则表示f(x0)必定存在,显然当Δx=0(即x=x0)时Δy=0<ε。于是上述推导过程中可以取消0<|Δx|这个条件。函数与不等式和方程存在联系(初等函数)。令函数值等于零,从几何角度看,对应的自变量的值就是图像与X轴的交点的横坐标。从代数角度看,对应的自变量是方程的解。另外,把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。参考资料来源:百度百科--连续函数
函数连续的充要条件 函数连续的充要条件证明
判断函数f(x)在x0点处连续,当且仅当f(x)满足以下三个充要条件:1、f(x)在x0及其左右近旁有定义。2、f(x)在x0的极限存在。3、f(x)在x0的极限值与函数值f(x0)相等。 函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。 对于这种现象,我们说因变量关于自变量是连续变化的,连续函数在直角坐标系中的图像是一条没有断裂的连续曲线。由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。 法则: 定理一在某点连续的有限个函数经有限次和、差、积、商(分母不为0)运算,结果仍是一个在该点连续的函数。 定理二连续单调递增(递减)函数的反函数,也连续单调递增(递减)。 定理三连续函数的复合函数是连续的。 这些性质都可以从连续的定义以及极限的相关性质中得出。