体积

立体梯形的体积怎么计算

V=〔S1+S2+开根号(S1*S2)〕/3*H 注:V:体积;S1:上表面积;S2:下表面积;H:高。

不规则四棱台体积计算公式

四棱台体积公式:①、[S上+S下+√(S上×S下)]*h /3 (可以用于四棱锥) [上面面积+下面面积+根号下(上面面积×下面面积)]×高÷3 。②、(S上+S下)*h/2 (不能用于四棱锥) (上面面积+下面面积)x高÷2 。注意:1 第②个最简便的公式 可以把正方体当作四棱台验证 2 把四棱锥看成上面面积为0的四棱台 适用于第①个公式 但是四棱锥不能用第②个公式。扩展资料体积公式推导由相似三角形可得b/h1=a/(h1+h2),所以h1=bh2/(a-b).V台 = a^2(h1+h2)/3 - b^2*h1/3=h1(a^2-b^2)/3+h2*a^2/3=(a+b)*b*h/3+a^2*h/3=(a^2+b^2+ab)*h2/3

正四棱柱的底面积为25㎝2高为6㎝,求它的侧面积和体积

上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱。正四棱柱是平行六面体的一种特殊情况。简单的说,正四棱柱进一步是长方体的特殊情况。正四棱柱的底面积为25㎝2高为6㎝。设其底边长为a,侧棱长为h,则其底边长为a=5㎝。体积可表示为V=a*a*h=5*5*6=150㎝3。侧面积为底面周长*斜高,即S=4a*h=4*5*6=120㎝2。

四棱柱的体积和表面积公式

棱柱表面积a=l*h+2*s,体积v=s*h(l--底面周长,h--柱高,s--底面面积)其他几何体我也给你写出来圆柱表面积a=l*h+2*s=2π*r*h+2π*r^2,体积v=s*h=π*r^2*h(l--底面周长,h--柱高,s--底面面积,r--底面圆半径)球体表面积a=4π*r^2,体积v=4/3π*r^3(r-球体半径)圆锥表面积a=1/2*s*l+π*r^2,体积v=1/3*s*h=1/3π*r^2*h(s--圆锥母线长,l--底面周长,r--底面圆半径,h--圆锥高)棱锥表面积a=1/2*s*l+s,体积v=1/3*s*h(s--侧面三角形的高,l--底面周长,s--底面面积,h--棱锥高)满意谢谢及时采纳,并点“能解决+原创"!

正四棱柱表面积和体积公式

满意回答2013-03-2303:11棱柱表面积A=L*H+2*S,体积V=S*H(L--底面周长,H--柱高,S--底面面积)其他几何体我也给你写出来圆柱表面积A=L*H+2*S=2π*R*H+2π*R^2,体积V=S*H=π*R^2*H(L--底面周长,H--柱高,S--底面面积,R--底面圆半径)球体表面积A=4π*R^2,体积V=4/3π*R^3(R-球体半径)圆锥表面积A=1/2*s*L+π*R^2,体积V=1/3*S*H=1/3π*R^2*H(s--圆锥母线长,L--底面周长,R--底面圆半径,H--圆锥高)棱锥表面积A=1/2*s*L+S,体积V=1/3*S*H(s--侧面三角形的高,L--底面周长,S--底面面积,H--棱锥高)

正四棱柱表面积和体积公式

满意回答2013-03-2303:11棱柱表面积A=L*H+2*S,体积V=S*H(L--底面周长,H--柱高,S--底面面积)其他几何体我也给你写出来圆柱表面积A=L*H+2*S=2π*R*H+2π*R^2,体积V=S*H=π*R^2*H(L--底面周长,H--柱高,S--底面面积,R--底面圆半径)球体表面积A=4π*R^2,体积V=4/3π*R^3(R-球体半径)圆锥表面积A=1/2*s*L+π*R^2,体积V=1/3*S*H=1/3π*R^2*H(s--圆锥母线长,L--底面周长,R--底面圆半径,H--圆锥高)棱锥表面积A=1/2*s*L+S,体积V=1/3*S*H(s--侧面三角形的高,L--底面周长,S--底面面积,H--棱锥高)

直四棱柱的面积、体积公式

体积=(1/3)×底面积×高表面积=4×底面周长×高+2×底面积不懂可追问,有帮助请采纳,谢谢!

直四棱柱的表面积,体积公式

体积=(1/3)×底面积×高 表面积=4×底面周长×高+2×底面积

四棱柱体积公式

如果是正棱柱,即侧棱垂直地面的,V=Sh,S是底面积,h是高; 如果是斜棱柱,V=Sh,h是上下底面的垂直高度差.棱柱都是这公式.

直四棱柱的面积、体积公式

体积:底面积*高.面积:底面积*2+侧面积*2+另一侧面积*2.某一侧的面积:长*宽.

棱柱的体积公式

棱柱的体积公式: V=s*h(s为底面积,h为高)。1、棱柱的截面主要是对角面和平行于底面的截面,学习时应注意掌握它们的性质,其余各种截面应从其位置及形状去分析考虑。2、求棱柱的侧面积时,应注意它是求各侧面面积的和,而不是指求某一个侧面的面积。(1)、直棱柱的侧面积是将棱柱的侧面展开后推导得出公式,使用时不应死记公式,而应从侧面形状来分析求取。(2)、斜棱柱的侧面积可分析侧面形状逐个求得,也可用直截面周长与侧棱长的乘积。扩展资料棱柱的性质1、底面是正多边形的直棱柱叫做正棱柱。2、正棱柱是侧棱都垂直于底面,且底面是正多边形的棱柱。特别注意:底面为正多边形,侧棱垂直于底面,但是侧棱和底面边长不一定相等。3、直棱柱侧棱也是垂直于底面,侧棱和底面边长不一定相等,而且底面多边形形状也不确定。4、上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱。正四棱柱是平行六面体的一种特殊情况。简单的说,正四棱柱进一步是长方体的特殊情况。设其底边长为a,侧棱长为h,则其体积可表示为V=a*a*h。侧面积为底面周长*斜高,即S=4a*h。参考资料来源:百度百科——棱柱

怎样计算棱柱的体积?

棱柱的体积公式: V=s*h(s为底面积,h为高)。1、棱柱的截面主要是对角面和平行于底面的截面,学习时应注意掌握它们的性质,其余各种截面应从其位置及形状去分析考虑。2、求棱柱的侧面积时,应注意它是求各侧面面积的和,而不是指求某一个侧面的面积。(1)、直棱柱的侧面积是将棱柱的侧面展开后推导得出公式,使用时不应死记公式,而应从侧面形状来分析求取。(2)、斜棱柱的侧面积可分析侧面形状逐个求得,也可用直截面周长与侧棱长的乘积。扩展资料棱柱的性质1、底面是正多边形的直棱柱叫做正棱柱。2、正棱柱是侧棱都垂直于底面,且底面是正多边形的棱柱。特别注意:底面为正多边形,侧棱垂直于底面,但是侧棱和底面边长不一定相等。3、直棱柱侧棱也是垂直于底面,侧棱和底面边长不一定相等,而且底面多边形形状也不确定。4、上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱。正四棱柱是平行六面体的一种特殊情况。简单的说,正四棱柱进一步是长方体的特殊情况。设其底边长为a,侧棱长为h,则其体积可表示为V=a*a*h。侧面积为底面周长*斜高,即S=4a*h。参考资料来源:百度百科——棱柱

棱柱底面积怎么求体积公式

棱柱的体积公式: V=s*h(s为底面积,h为高)。1、棱柱的截面主要是对角面和平行于底面的截面,学习时应注意掌握它们的性质,其余各种截面应从其位置及形状去分析考虑。2、求棱柱的侧面积时,应注意它是求各侧面面积的和,而不是指求某一个侧面的面积。(1)、直棱柱的侧面积是将棱柱的侧面展开后推导得出公式,使用时不应死记公式,而应从侧面形状来分析求取。(2)、斜棱柱的侧面积可分析侧面形状逐个求得,也可用直截面周长与侧棱长的乘积。扩展资料棱柱的性质1、底面是正多边形的直棱柱叫做正棱柱。2、正棱柱是侧棱都垂直于底面,且底面是正多边形的棱柱。特别注意:底面为正多边形,侧棱垂直于底面,但是侧棱和底面边长不一定相等。3、直棱柱侧棱也是垂直于底面,侧棱和底面边长不一定相等,而且底面多边形形状也不确定。4、上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱。正四棱柱是平行六面体的一种特殊情况。简单的说,正四棱柱进一步是长方体的特殊情况。设其底边长为a,侧棱长为h,则其体积可表示为V=a*a*h。侧面积为底面周长*斜高,即S=4a*h。参考资料来源:百度百科——棱柱

四棱台的体积公式推导

体积公式推导由相似三角形可得b/h1=a/(h1+h2),所以h1=bh2/(a-b).V台 = a^2(h1+h2)/3 - b^2*h1/3=h1(a^2-b^2)/3+h2*a^2/3=(a+b)*b*h2/3+a^2*h2/3=(a^2+b^2+ab)*h2/3体积公式正四棱台V=H/3[S1+S2+√(S1S2)]注:非通用公式,(s1是上底的面积 ,s2是下底的面积 )扩展资料:四棱锥的体积公式推导在四棱锥上做一个与四棱锥B1-ABCD同底等高的四棱柱A1B1C1D1-ABCD出来,沿底面的对角线BD与棱锥的顶角B1所在的面把四棱锥切开,把四棱锥的问题转化成三棱锥的问题。这时候,两个三棱柱与两个三棱锥都分别是等底等高。他们的体积是分别相等的。若能证明三棱锥体积是1/3sh,即可证明四棱锥的体积计算公式1/3sh。连接A D1之后,发现三棱柱是由三个三棱锥组成,只要证明这三个三棱锥B1-ABD,A-A1B1D1,A-D1B1D体积相等就可以了。B1-ABD与A-A1B1D1等底等高,所以体积相等。B1-ABD换个角度看其实就是A-B1BD,A-B1BD与A-D1B1D等底等高,所以体积相等。所以B1-ABD与A-D1B1D体积相等。也就是说组成三棱柱的这三个三棱锥体积相等,所以三棱锥体积是1/3sh所以四棱锥的体积计算公式1/3sh。四棱锥的底面面积S加顶点A"面积0除以2的平均面积1/2S的一个四棱柱乘以高h,就是四棱锥体积:V=1/3(S+0)h=1/3Sh参考资料来源:百度百科-四棱台

直四棱柱的面积、体积公式

体积:底面积*高.面积:底面积*2+侧面积*2+另一侧面积*2.某一侧的面积:长*宽.

斜四棱柱体积

1.棱柱的上下底面全等,不会是“其上底和下底不相等” 2.例如斜四棱柱体积公式是V=S底X高 这里的高不是侧棱而是两底面之间的距离

直四棱柱的表面积,体积公式

体积=(1/3)×底面积×高 表面积=4×底面周长×高+2×底面积

四棱锥体积是什么?

四棱锥体积是v=1/3sh。四棱锥是指由四个三角形和一个四边形构成的空间封闭图形,而正四棱锥,则是底面为正方形,四个三角形为全等三角形而且是等腰三角形。体积公式推导:在四棱锥上做一个与四棱锥B1-ABCD同底等高的四棱柱A1B1C1D1-ABCD出来,沿底面的对角线BD与棱锥的顶角B1所在的面把四棱锥切开,把四棱锥的问题转化成三棱锥的问题。这时候,两个三棱柱与两个三棱锥都分别是等底等高。他们的体积是分别相等的。若能证明三棱锥体积是1/3sh,即可证明四棱锥的体积计算公式1/3sh。连接A,D1之后,发现三棱柱是由三个三棱锥组成,只要证明这三个三棱锥B1-ABD,A-A1B1D1,A-D1B1D体积相等就可以了。B1-ABD与A-A1B1D1等底等高,所以体积相等。B1-ABD换个角度看其实就是A-B1BD,A-B1BD与A-D1B1D等底等高,所以体积相等。所以B1-ABD与A-D1B1D体积相等。也就是说组成三棱柱的这三个三棱锥体积相等,所以三棱锥体积是1/3sh。所以四棱锥的体积计算公式1/3sh。四棱锥的底面面积S加顶点A"面积0除以2的平均面积1/2S的一个四棱柱乘以高h,就是四棱锥体积:V=1/3(S+0)h=1/3Sh。

正四棱锥体积公式

正四棱锥体积公式:1/3*底面积*棱锥的高。表面积公式:四个三角形和一个正方形面积的和正四棱锥:底面是正方形,侧面为4个全等的等腰三角形且有公共顶点,顶点在底面的投影是底面的中心。三角形的底边就是正方形的边。注意:体积算法是棱锥的高,以正方形中心到顶点的距离来算。扩展资料:正四棱锥的性质:1、正四棱锥各侧棱相等,各侧面都是全等的等腰三角形,各等腰三角形底边上的高相等(它叫做正棱锥的斜高);2、正四棱锥的高、斜高和斜高在底面内的射影组成一个直角三角形,正棱锥的高、侧棱、侧棱在底面内的射影也组成一个直角三角形;3、正四棱锥的侧棱与底面所成的角都相等;正棱锥的侧面与底面所成的二面角都相等;4、正四棱锥的侧面积:如果正棱锥的底面周长为c,斜高为h",那么它的侧面积是 s=1/2ch‘。参考资料来源:百度百科——正四棱锥

请问 正四棱柱的底面边长为3cm,高为4cm,求它的全面积和体积 谢谢

你参考看看!

已知球体半径为R,内接正四棱柱,正四棱柱的体积最大时的底面棱长

2根3比3根据三元均值不等式‘三次方根(abc)《 (a+b+c)/3"当a+b+c为定值时,三次方根(abc)有最大值为(a+b+c)/3 (当且仅当a=b=c是取等号)因为正四棱柱的体积公式为长乘以宽乘以高,即为A*B*C当且仅当A=B=C的时候取得最大值。所以球体内体积最大的内接正四棱柱为正方体。(也可以用函数求,不过我觉得还是用三元均值不等式比较简单)假设内接正方体为ABCDabcd(请严格按照字母顺序画图,且A与a在同一棱上),连接Ac,Ac即为球体的直径2R,连接AC,因为正方体所以棱Cc垂直于面ABCD且垂直于面内直线AC,三角形ACc为直角三角形,我们设棱长为x,AB=BC=x,勾股定理求的AC=(根2)x,且Cc=x,所以Ac=(根3)x,因为Ac=2R解方程求的x等于2根3比3

直四棱柱的体积怎么算?

体积=底面四边形的面积×四棱柱的高

高中立体几何体积公式

高中立体几何体积公式如下:1、棱柱体积:V=S*H。2、圆柱体积:V=S*H=π*R^2*H。3、球体体积:V=4/3π*R^3。4、圆锥体积:V=1/3*S*H=1/3π*R^2*H。5、棱锥体积:V=1/3*S*H。体积,或称容量、容积,几何学专业术语,是物件占有多少空间的量。体积的国际单位制是立方米。一件固体物件的体积是一个数值用以形容该物件在三维空间所占有的空间。常用体积单位:立方米、立方分米、立方厘米、立方毫米。立体几何学习技巧:概念、公理、定理自然要记,但一些重要的中间结论同样也要记。只是不能死记,要在理解的基础上去记。有时,利用这些结论可以很快地解决一些运算起来很繁琐的题目,尤其是在求解选择题或填空题时。对于解答题虽然不能直接运用这些结论,但大家可以把这些结论先证出来再加以运用。如数一个几何体有多少对异面直线,往往数一个几何体有多少个四面体(因为四面体模型中有三对异面直线)就可以了。根据“长对正、高平齐、宽相等”,不难由几何体画出相应的三视图,但往往难以由三视图想象出相应的几何体。

平行四边体的体积公式

平行四边体的体积公式:v=aXh。体积,几何学专业术语。当物体占据的空间是三维空间时,所占空间的大小叫做该物体的体积。体积的国际单位制是立方米。一维空间物件(如线)及二维空间物件(如正方形)都是零体积的。空间是与时间相对的一种物质客观存在形式,但两者密不可分,按照宇宙大爆炸理论,宇宙从奇点爆炸之后,宇宙的状态由初始的“一”分裂开来,从而有了不同的存在形式、运动状态等差异,物与物的位置差异度量称之为“空间”,位置的变化则由“时间”度量。

棱长为4的正四面体的外接球的体积

解:先求对角线的长度即球的直径:4根号3则半径2根下3所以体积(4/3)πR*R*R=32(根3)π

求所有多边形的面积公式以及柱体体积公式

正多边形,找中心对称点O,以O连结多边形其中一点X,以OX为半径画圆,正多边形的所有顶定一定都在圆上。过圆心做XY的垂线交XY于A,AX=XY/2,边AX所对的圆心角是可求的,得高,得面积s.总S=s*2*边数 V台体=1/3h(S上+√(S下*S上)+S下)  当S上=S下时:  V柱=S*h  当S上=0时:  V锥=1/3S*h  都可根据台体体积推得."S上"为台体上体面,"S下"为台体下底面,"h"为高.  本人推导出在非标准状态下更正确的体积公式  底面a×b,顶面c×d,高h  体积公式:v=1/2(ab+cd)h-1/6(a-c)(b-d)h  完全实用于锥体、柱体、棱台(不需要是正棱台)  在棱柱状态下,底面与顶面a=c,b=d,  则体积公式简化后为v=a×b×h  在正棱锥状态下,顶面面积为0,并且是c=0,d=0.  则体积公式简化为v=1/2abh-1/6abh=1/3a×b×h  在非标准状态下棱台体积如顶面为只有长没有宽状态下的刃型体积(如横放的三棱柱)  顶面c=a,d=0  v=1/2a×b×h(用三棱柱立式来算也是该结果)  像这种非标准状态恰恰是现有公式根本无法计算的(只要不立起来算)  当棱台为正棱台时,简化公式为:  相当于底面、顶面均为正方型,即a=b,c=d;  v=1/2(aa+cc)h-1/6(a-c)(a-c)h=1/3h(aa+cc+ac)  与标准状态下的棱台计算公式完全吻合。  对于圆台也是一样,只不过将圆理解成正方型(派×r平方理解成边长为根号派×r)  对于很特殊体积计算一样有效:  如底面面积为0,顶面面积为0的体积计算高为h(其实是一个非标的四面体)  b=0,c=0  v=1/6adh  这恐怕标准的棱台公式是怎么也无法计算的,因为底面积为0,顶面积也为0,按照公式推导只能是0,而其实是有这样的实物的,就是一个四面体最后那个 要看钢的密度*体积才能知道质量

边长为1的正四面体的外接球体积是多少

边长为1的正四面体就是正方体,那么外接球体就是正球体,球的半径也就是正方体的体对角线的一半了,也就是二分之根号3,那么球体的体积把半径带进球体体积公式就可以了

四棱柱的体积公式

四棱柱的体积公式是V=SH,H是柱高,S啊底面面积。在几何学中,四角柱又称四棱柱,是指底面为四边形的柱体,当底面为正方形时可成为正六面体。所有四角柱都有6个面8个顶点和12个边。对偶多面体是双四角锥。正四角柱代表底面为正方形的四角柱,其对偶为正双四角锥。若侧面不是正方形也称为长方体,因为可以使用其中一个侧面当作底面。侧面也是正方形的正四角柱是正立方体,其具有正八面体对称性,对应的考克斯特群是BC3对称性,由于底面和侧面全等,因此每个顶点都是三个正方形(一个底面正方形和两个侧面正方形)的公共顶点,施莱夫利符号{4,3},其顶点图为正三角形,顶点布局为3(三个正方形,一个底面和两个侧面),在考克斯特-迪肯符号中以表示,由于侧面是正方形的正四角柱是正多面体,因此其对偶多面体也会是正多面体,即正八面体,也就是一个所有面都全等的正双四角锥。

求四棱柱的表面积和体积公式

棱柱表面积A=L*H+2*S,体积V=S*H (L--底面周长,H--柱高,S--底面面积) 其他几何体我也给你写出来 圆柱表面积A=L*H+2*S=2π*R*H+2π*R^2,体积V=S*H=π*R^2*H (L--底面周长,H--柱高,S--底面面积,R--底面圆半径) 球体表面积A=4π*R^2,体积V=4/3π*R^3 (R-球体半径) 圆锥表面积A=1/2*s*L+π*R^2,体积V=1/3*S*H=1/3π*R^2*H (s--圆锥母线长,L--底面周长,R--底面圆半径,H--圆锥高) 棱锥表面积A=1/2*s*L+S,体积V=1/3*S*H (s--侧面三角形的高,L--底面周长,S--底面面积,H--棱锥高) 满意谢谢及时采纳,并点“能解决+原创"!

四棱柱的体积和表面积公式

体积=(1/3)×底面积×高 表面积=4×底面周长×高+2×底面积

正四棱柱的体积公式

正四棱柱的体积公式:上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱。正四棱柱是平行六面体的一种特殊情况。简单的说,正四棱柱进一步是长方体的特殊情况。设其底边长为a,侧棱长为h,则其体积可表示为V=a*a*h。侧面积为底面周长*斜高,即S=4a*h。相关关系:正方体都是正四棱柱,但正四棱柱不都是正方体。长方体都是直四棱柱(底面和侧面垂直的四棱柱),但不一定是正四棱柱(长方体底面不一定为正方形)。正四棱柱都是长方体(包括正方体和底面为正方形的长方体)。用描述法表示的集合,有以下关系;{正方体}包含于{正四棱柱}包含于{长方体}。底面积*高,比如边长为L则体积为L的立方。V=SH,上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱,正四棱柱是平行六面体的一种特殊情况,简单的说,正四棱柱进一步是长方体的特殊情况。棱柱是几何学中的一种常见的三维多面体,指上下底面平行且全等,侧棱平行且相等的封闭几何体。若棱柱的底面为n边形,那么该棱柱便称为棱柱。

四方棱柱体体积计算方法

四方棱柱体体积计算方法:体积=底面积*高四棱柱的侧面:四棱柱中除两个底面以外的其余各个面都叫做四棱柱的侧面,四棱柱有4个侧面四棱柱的侧棱:四棱柱中两个侧面的公共边叫做棱柱侧棱,四棱柱有4条侧棱。四棱柱的棱:四棱柱一共有12条棱。侧棱有4条。1)四棱柱的各个侧面都是平行四边形,所有的侧棱都平行且相等;直四棱柱的各个侧面都是矩形;正四棱柱的各个侧面都是全等的矩形。2)四棱柱的两个底面与平行于底面的截面是对应边互相平行的全等多边形。3)过四棱柱不相邻的两条侧棱的截面都是平行四边形。4)直四棱柱的侧棱长与高相等;直四棱柱的侧面及经过不相邻的两条侧棱的截面都是矩形。

四棱柱体积公式

如果是正棱柱,即侧棱垂直地面的,V=Sh,S是底面积,h是高;如果是斜棱柱,V=Sh,h是上下底面的垂直高度差。棱柱都是这公式。

正四棱柱的体积公式是什么

正四棱柱的体积公式是V=SH,上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱,正四棱柱是平行六面体的一种特殊情况,简单的说,正四棱柱进一步是长方体的特殊情况。棱柱是几何学中的一种常见的三维多面体,指上下底面平行且全等,侧棱平行且相等的封闭几何体。若棱柱的底面为n边形,那么该棱柱便称为棱柱。

梯形体积怎么算

梯形体积的计算方法实际上就是计算一个四棱柱被切割成两个相同的梯形后的剩余部分的体积。我们可以通过以下步骤来理解这个概念:首先,我们需要了解梯形的面积公式。梯形的面积公式为:A = (上底 + 下底) * 高 / 2。其中,A 是梯形的面积,上底和下底分别是梯形的上边和下边的长度,高是梯形的高。其次,我们需要了解四棱柱的体积公式。四棱柱的体积公式为:V = lwh,其中,l 是四棱柱的长度,w 是宽度,h 是高度。现在,我们将一个四棱柱沿着长度方向切割成两个相同的梯形。假设我们将四棱柱的长度平均分成两部分,那么每个梯形的长度就是 l / 2。同时,由于两个梯形的高度相等,所以每个梯形的高度也是 h。根据梯形面积公式,我们可以计算出每个梯形的面积。每个梯形的面积为:A = (l / 2 + l / 2) * h / 2 = l * h / 4。由于我们将四棱柱切割成了两个相同的梯形,所以剩下的部分的体积就是两个梯形体积之和。每个梯形的体积为:V = A * h = l * h / 4 * h = l * h^2 / 4。那么剩下的部分的总体积就是 2 * V = l * h^2 / 2。最后,我们可以将剩下的部分的总体积与原四棱柱的体积进行比较。原四棱柱的体积为 V = lwh,而剩下的部分的总体积为 l * h^2 / 2。可以看出,剩下的部分的总体积正好是原四棱柱体积的一半。通过以上步骤,我们可以得出结论:梯形体积等于原四棱柱体积的一半。希望这个解释能够帮助您理解梯形体积的概念。

棱柱的体积公式怎样写?

棱柱的体积公式: V=s*h(s为底面积,h为高)。1、棱柱的截面主要是对角面和平行于底面的截面,学习时应注意掌握它们的性质,其余各种截面应从其位置及形状去分析考虑。2、求棱柱的侧面积时,应注意它是求各侧面面积的和,而不是指求某一个侧面的面积。(1)、直棱柱的侧面积是将棱柱的侧面展开后推导得出公式,使用时不应死记公式,而应从侧面形状来分析求取。(2)、斜棱柱的侧面积可分析侧面形状逐个求得,也可用直截面周长与侧棱长的乘积。扩展资料棱柱的性质1、底面是正多边形的直棱柱叫做正棱柱。2、正棱柱是侧棱都垂直于底面,且底面是正多边形的棱柱。特别注意:底面为正多边形,侧棱垂直于底面,但是侧棱和底面边长不一定相等。3、直棱柱侧棱也是垂直于底面,侧棱和底面边长不一定相等,而且底面多边形形状也不确定。4、上、下底面都是正方形,且侧棱垂直于底面的棱柱叫做正四棱柱。正四棱柱是平行六面体的一种特殊情况。简单的说,正四棱柱进一步是长方体的特殊情况。设其底边长为a,侧棱长为h,则其体积可表示为V=a*a*h。侧面积为底面周长*斜高,即S=4a*h。参考资料来源:百度百科——棱柱

底面是直角梯形的四棱柱求体积怎么计算

底面积*高===============================|【真实】【准确】【快速】【完美】|===============================不懂请追问,解决请【采纳为最佳答案】,答题不易,谢谢支持!

怎样求四棱柱体积?求公式

三棱锥的体积是:s=1/3*底面积*h 四棱锥的体积也一样。但是三棱柱和四棱柱的体积不需要乘以1/3,直接是:底面积乘以高【同学你好,如果问题已解决,记得右上角采纳哦~~~您的采纳是对我的肯定~谢谢哦】

棱柱的体积公式是V=S底X高。那么不是直棱柱的话,例如斜四棱柱。其上底和下底不相等,那么还用底乘高

1. 棱柱的上下底面全等,不会是“其上底和下底不相等”2. 例如斜四棱柱体积公式是V=S底X高 这里的高不是侧棱而是两底面之间的距离

已知球体半径为R,内接正四棱柱,正四棱柱的体积最大时的底面棱长

2根3比3 根据三元均值不等式‘三次方根(abc)《 (a+b+c)/3" 当a+b+c为定值时,三次方根(abc)有最大值为(a+b+c)/3 (当且仅当a=b=c是取等号) 因为正四棱柱的体积公式为长乘以宽乘以高,即为A*B*C当且仅当A=B=C的时候取得最大值. 所以球体内体积最大的内接正四棱柱为正方体.(也可以用函数求,不过我觉得还是用三元均值不等式比较简单) 假设内接正方体为ABCDabcd(请严格按照字母顺序画图,且A与a在同一棱上),连接Ac,Ac即为球体的直径2R,连接AC,因为正方体所以棱Cc垂直于面ABCD且垂直于面内直线AC,三角形ACc为直角三角形,我们设棱长为x,AB=BC=x,勾股定理求的AC=(根2)x,且Cc=x,所以Ac=(根3)x,因为Ac=2R解方程求的x等于2根3比3

棱柱体积公式

棱柱的体积公式:V=sh(s为底面积,h为高)。棱柱的截面主要是对角面和平行于底面的截面,学习时应注意掌握它们的性质,其余各种截面应从其位置及形状去分析考虑。求棱柱的侧面积时,应注意它是求各侧面面积的和,而不是指求某一个侧面的面积。直棱柱的侧面积是将棱柱的侧面展开后推导得出公式,使用时不应死记公式,而应从侧面形状来分析求取。斜棱柱的侧面积可分析侧面形状逐个求得,也可用直截面周长与侧棱长的乘积。扩展资料:另外,棱柱展开图是指空间形体的表面在平面上摊平后得到的图形。直棱柱展开图的绘制对于模型和空心工件的制作有重要作用。如果沿着直棱柱的两个底面和一条棱线将其展开,则会得到右图所示的展开图。从图中不难得出棱柱展开图的特点:1、棱柱的所有侧面都是矩形且都有一边相等。2、棱柱体两个底面的边展开后形成两条平行且相等的线段,与棱柱所有棱线垂直。参考资料来源:百度百科-棱柱

正四棱锥内接正四棱柱的体积的极值问题

正四棱锥内接正四棱柱的体积的极值问题如下:正四棱锥是一种由一个正方形和四个等腰三角形构成的几何体,而内接正四棱柱则是指正四棱锥中心点与棱上每个顶点相连所构成的正方形与高所构成的几何体。要求求解内接正四棱柱的体积的极值问题,必须首先熟悉与之相关的基础概念。首先,我们需要了解正四棱锥和内接正四棱柱的结构特征。正四棱锥在立体空间中具备以下几何特征:有5个面、8个顶点、10条棱;顶点处,每个三角形都连接了一个正方形,通过这个正方形,可以构造出一底面为正方形、侧棱为等边三角形的正四棱锥。在正四棱锥的中心生成正方形,然后再通过将每个顶点与中心相连,得到内接正四棱柱。该正四棱柱的底面为生成的正方形,高为正四棱锥的高。其次,我们需要熟悉求解体积的基本公式,包括正四棱锥和内接正四棱柱的体积公式。正四棱锥的体积公式为:V=S*h/3,其中V为体积,S为底面积,h为高。内接正四棱柱的体积公式为:V"=S"*h",其中V"为内接正四棱柱的体积,而S"为底面积,h"为高。最后,我们需要了解求解极值问题的基本知识,包括导数、极值、最大值和最小值。对于一个函数f(x),如果其在x=x0处的导数为零或不存在,则称x0为f(x)的驻点。驻点可能是极值点,也可能是拐点。如果在驻点x0左侧,f(x)单调递增,在右侧单调递减,则x0是极大值点。反之,如果在驻点左侧单调递减,在右侧单调递增,则x0是极小值点。同时,如果在函数定义域中,最大值或者最小值可以用一些方法求得,则我们称这个值为全局最大值或全局最小值。所以对于内接正四棱柱的体积的极值问题,我们需要计算体积的导数,并将导数等于零的点代入原函数中求解,检查是否为极值点或者拐点,最后再考虑求解最大值或最小值。具体而言,我们可以用向量分析的方法求解内接正四棱柱的体积。设正四棱锥的高为h,旋转对称的四棱柱的底面半径为r,则内接正四棱柱的高为h/2,底面半径为r/√2。用向量a表示以正方形中心为顶点的等腰三角形,向量b表示对称于向量a的一个等腰三角形,v为正四棱锥体积,则从向量a、b构成的平面上观察,内接四棱柱的体积可以表示为:V"=(h/4)(a+b)*(r/√2)求导得:dV"/dr=(1/2)h(a+b)/√2,上式为0可得,当h(a+b)=0时,取最小值。

斜棱柱的斜棱柱的侧面积和体积

斜棱柱的侧面积:如果斜棱柱的侧棱长是L,直截面的周长是C1,那么它的侧面积计算公式为:S=C1*L(斜棱柱的侧面积可分析侧面形状逐个求得,也可用直截面周长与侧棱长的乘积)。斜棱柱的体积:斜圆棱柱:底面积*高(底面和顶面的距离),即(S为底面积,H为高):V=S*H。斜四棱柱:长*宽*上下两底面垂直距离(作垂直底面的高),即(a为长,b为宽,h为上下两底面垂直距离):V=a*b*h。直棱柱与斜棱柱的体积公式都是(S为底面积,H为竖直高):V=S*H。扩展资料:斜棱柱有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都互相平行。斜棱柱的侧面是平行四边形,底面是多边形,所有的侧棱都平行且相等。参考资料:百度百科—斜棱柱

正四棱柱体积公式

底面积*高,比如边长为L则体积为L的立方

四棱柱,如图求体积,请按我的数字帮我算算,然后解释一下。谢谢

这个问题应该是学建筑学的入门,只要学会看立体图和剖面图就很简单了如图所示这个立体是一个楔形四棱柱高为h=13、上底面长a=3.5,宽b=2.5下底面长A=5.5,宽b=2.5然后根据体积公式V=A*b*h-1/2(A-a)*b*h解得V=146.25

正四棱柱底面边长为4,侧棱长为3,则其体积为?

解棱柱的体积公式为V=Sh由棱柱正四棱柱,则棱柱的底面是边长为4的正方形,棱柱的高为棱柱的侧棱为3则V=Sh=4×4×3=48

体积公式有哪几个?

1、长方体体积=长×宽×高。2、正方体体积=棱长×棱长×棱长。3、圆柱(正圆)体积=圆周率×(底半径×底半径)×高。4、圆锥(正圆)体积=圆周率×底半径×底半径×高/3。5、球体体积=4/3(圆周率×半径的三次方)。体积公式是用于计算体积的公式,即计算各种几何体体积的数学算式。比如:圆柱、棱柱、锥体、台体、球、椭球等。体积公式:计算各种由平面和曲面所围成。一般来说一个几何体是由面、交线(面与面相交处)、交点(交线的相交处或是曲面的收敛处)而构成的图形的体积的数学算式。扩展资料:立体几何图形可以分为以下几类:1、柱体:包括圆柱和棱柱。棱柱又可分为直棱柱和斜棱柱,按底面边数的多少又可分为三棱柱、四棱柱、N棱柱;棱柱体积都等于底面面积乘以高,即V=SH;2、锥体:包括圆锥体和棱锥体,棱锥分为三棱锥、四棱锥及N棱锥。3、旋转体:包括圆柱、圆台、圆锥、球、球冠、弓环、圆环、堤环、扇环、枣核形等。4、截面体:包括棱台、圆台、斜截圆柱、斜截棱柱、斜截圆锥、球冠、球缺等。其表面积和体积一般都是根据图形加减解答。

斜四棱柱体积计算公式

和正四棱柱一样,底面积*高=体积

四面体体积公式是什么?

V=1/2(S+0)h=1/2Sh,S面积三角形AC乘h"除以2。一个三棱柱中的三个等体积的三棱锥:h为底高(法线长度),A为底面面积,V为体积,L为斜高,C为棱锥底面周长三棱锥的底面面积S加顶点A"面积0除以2的平均面积1/2S的一个三棱柱乘以高h,就是三棱锥体积:V=1/2(S+0)h=1/2Sh,S面积三角形AC乘h"除以2。性质三棱锥是一种简单多面体。有四个面、四个顶点、六条棱、四个三面角、六个二面角与十二个面角。若四个顶点为A,B,C,D.则可记为四面体ABCD,当看做以A为顶点的三棱锥时,也可记为三棱锥A-BCD。四面体的每个顶点都有惟一的不通过它的面,称为该顶点的对面,原顶点称这个面的对顶点。在四面体的六条棱中,没有公共端点的两条称为对棱。四面体有三双对棱。且对棱的中点连结的线段(三条)彼此平分于同一点即四面体的重心,亦称四面体的形心。

四面体体积公式是什么?

V=1/2(S+0)h=1/2Sh,S面积三角形AC乘h"除以2。一个三棱柱中的三个等体积的三棱锥:h为底高(法线长度),A为底面面积,V为体积,L为斜高,C为棱锥底面周长。把三棱锥D-BEF写成B-DEF,就相当于我们以B为顶点以DEF为底面,于是,显然,三棱锥B-DEF与三棱锥D-ABC因等底等高而体积相等。方法二是,把三棱锥D-CBF写成B-CDF,而B-CDF与B-ACD(即D-ABC)等底等高,体积相等。最终,证明了这个三棱柱被分成的三个三棱锥的体积相等,而其中一个就是与三棱柱同底等高的三棱柱,所以,我们最终就证明了一个三棱锥的体积等于同底等高三棱柱的体积的三分之一。

正四面体体积公式

正四面体体积公式:正四面体的体积=体积比值*棱长的立方。正四面体是由四个全等正三角形围成的空间封闭图形,所有棱长都相等。它有4个面,6条棱,4个顶点。正四面体是最简单的正多面体。正四面体属于正三棱锥,是特殊的正三棱锥。正四面体的重心、四条高的交点、外接球、内切球球心共点,此点称为中心。正四面体有一个在其内部的内切球和七个与四个面都相切的旁切球,其中有三个旁切球球心在无穷远处。

四面体体积公式是V=1/6abc吗

不是。四面体就是三棱锥,以任意两坐标轴所在面为底面,则另一坐标轴为高,利用锥体体积公式可得V=Sh/3=1/2*ab*c/3=abc/6。四面体是由不在同一平面的四点所连接成的四个三角形包围起来的立体图形,因此有时候也称为三棱锥,而棱锥的体积等于与其等底同高的棱柱的体积的三分之一,而棱柱的体积等于底面积乘以高,因此四面体的体积就等于底面积乘以高的三分之一,这便是求解四面体体积的基本公式。扩展资料:注意事项:1、注意舍入方式(0.5的舍入方向),防止输出-0.2、几何题注意多测试不对称数据。3、整数几何注意xmult和dmult是否会出界,符点几何注意eps的使用。4、避免使用斜率,注意除数是否会为0。5、公式一定要化简后再代入。6、判断同一个2*PI域内两角度差应该是abs(a1-a2)<beta||abs(a1-a2)>pi+pi-beta,相等应该是abs(a1-a2)<eps||abs(a1-a2)>pi+pi-eps。参考资料来源:百度百科-四面体

求正四面体体积的公式。

试着先作正方体ABCD-A"B"C"D",连结ACB‘D"就是一个正四面体,从中研究。 易知正四面体体积为正方体的三分之一。

四面体体积公式是什么来着!

先取定一个面为底面,设它的面积为s 再过另一个不在底面的顶点作底面的高,算出高为h 那么四面体的体积就是hs/3

四面体体积公式是V=1/6abc吗

不是。四面体就是三棱锥,以任意两坐标轴所在面为底面,则另一坐标轴为高,利用锥体体积公式可得V=Sh/3=1/2*ab*c/3=abc/6。四面体是由不在同一平面的四点所连接成的四个三角形包围起来的立体图形,因此有时候也称为三棱锥,而棱锥的体积等于与其等底同高的棱柱的体积的三分之一,而棱柱的体积等于底面积乘以高,因此四面体的体积就等于底面积乘以高的三分之一,这便是求解四面体体积的基本公式。扩展资料:注意事项:1、注意舍入方式(0.5的舍入方向),防止输出-0.2、几何题注意多测试不对称数据。3、整数几何注意xmult和dmult是否会出界,符点几何注意eps的使用。4、避免使用斜率,注意除数是否会为0。5、公式一定要化简后再代入。6、判断同一个2*PI域内两角度差应该是abs(a1-a2)<beta||abs(a1-a2)>pi+pi-beta,相等应该是abs(a1-a2)<eps||abs(a1-a2)>pi+pi-eps。参考资料来源:百度百科-四面体

正四面体体积公式是什么 只要结果.

首先纠正,正四面体并不是正方体,正方体是6个面 其次,解答正四面体是4个面都是等边三角形. 最后,楼主问的体积公式是V=(根号2)*(棱长^3)/12,也就是:√2a^3/12(a为棱长) 补充知识: 高:√6a/3.中心把高分为1:3两部分. 表面积:√3a^2

四面体求体积

V=1/2(S+0)h=1/2Sh,S面积三角形AC乘h"除以2。一个三棱柱中的三个等体积的三棱锥:h为底高(法线长度),A为底面面积,V为体积,L为斜高,C为棱锥底面周长三棱锥的底面面积S加顶点A"面积0除以2的平均面积1/2S的一个三棱柱乘以高h,就是三棱锥体积:V=1/2(S+0)h=1/2Sh,S面积三角形AC乘h"除以2。扩展资料把三棱锥D-BEF写成B-DEF,就相当于我们以B为顶点以DEF为底面,于是,显然,三棱锥B-DEF与三棱锥D-ABC因等底等高而体积相等。方法二是,把三棱锥D-CBF写成B-CDF,而B-CDF与B-ACD(即D-ABC)等底等高,体积相等。最终,证明了这个三棱柱被分成的三个三棱锥的体积相等,而其中一个就是与三棱柱同底等高的三棱柱,所以,我们最终就证明了一个三棱锥的体积等于同底等高三棱柱的体积的三分之一。参考资料来源:百度百科-四面体

阿耶波多《天文历算书》中认为,四面体的体积公式为()。

阿耶波多《天文历算书》中认为,四面体的体积公式为()。 A.底面积乘以高除以2 B.底面积乘以高除以3 C.边长乘以高除以2 D.边长乘以高除以3 正确答案:A

正四面体的体积公式及推导

你可以把正四面体看作是在正方形里的一部分。容易知道他是所在正方体的1/4正四面体的棱长就是正方体面的对角线。假设正四面体的棱长是a,则正方体的边长等于根号2/2 a,所以正四面体的体积是1/4*(根号2/2 a)^3=根号2 a^3/16,

四面体体积是多少?

公式:V=1/2(S+0)h=1/2Sh,S面积三角形AC乘h"除以2。一个三棱柱中的三个等体积的三棱锥:h为底高(法线长度),A为底面面积,V为体积,L为斜高,C为棱锥底面周长。三棱锥棱锥的侧面展开图是由4个三角形组成的,展开图的面积,就是棱锥的侧面积,则:(其中Si,i=1,2为第i个侧面的面积)S全=S棱锥侧+S底。把三棱锥D-BEF写成B-DEF,就相当于我们以B为顶点以DEF为底面,于是,显然,三棱锥B-DEF与三棱锥D-ABC因等底等高而体积相等。方法二是,把三棱锥D-CBF写成B-CDF,而B-CDF与B-ACD(即D-ABC)等底等高,体积相等。最终,证明了这个三棱柱被分成的三个三棱锥的体积相等,而其中一个就是与三棱柱同底等高的三棱柱,所以,我们最终就证明了一个三棱锥的体积等于同底等高三棱柱的体积的三分之一。

正四面体的体积公式及推导

你可以把正四面体看作是在正方形里的一部分. 容易知道他是所在正方体的1/4 正四面体的棱长就是正方体面的对角线. 假设正四面体的棱长是a, 则正方体的边长等于根号2/2 a, 所以正四面体的体积是 1/4*(根号2/2 a)^3=根号2 a^3/16,

正四面体的体积公式及推导

首先纠正,正四面体并不是正方体,正方体是6个面其次,解答正四面体是4个面都是等边三角形。最后,楼主问的体积公式是v=(根号2)*(棱长^3)/12,也就是:√2a^3/12(a为棱长)补充知识:高:√6a/3。中心把高分为1:3两部分。表面积:√3a^2

四棱锥的底面体积怎么求?

四面体体积公式是V=Sh/3。四面体一般指三棱锥,三棱锥固定底面时有一个顶点,不固定底面时有四个顶点。正三棱锥不等同于正四面体,正四面体必须每个面都是正三角形。四面体作为最简单、最基本的几何体。若四面体的外接球球心与内切球球心重合,则四面体的对棱分别相等;若四面体的两组对棱互相垂直(有两组对棱互相垂直的四面体称为重心四面体或正交四面体),则第三组对棱也互相垂直。特征性质:1、a为边长,三棱锥的一种几何体,由四个三角形组成。固定底面时有一个顶点,不固定底面时有四个顶点。(正三棱锥不等同于正四面体,正四面体必须每个面都是正三角形)。2、四面体为正四面体的充要条件是,其棱均作为外接平行六面体的侧面对角线时,平行六面体为正方体。3、正四面体每条高的中点与底面三角形三顶点均构成直角四面体的四顶点,且高的中点为址三面角顶点。

四面体体积公式为什么要乘1/3

原因如下:四面体体积公式:V=1/3Sh。四面体(数学概念)一般指三棱锥,由四个三角形组成。固定底面时有一个顶点,不固定底面时有四个顶点。(正三棱锥不等同于正四面体,正四面体必须每个面都是正三角形)。正四面体的体积公式是√2a_/12,正四面体是由四个全等正三角形围成的空间封闭图形,所有棱长都相等,它有4个面,6条棱,4个顶点,正四面体是最简单的正多面体。

求正四面体体积的公式。

试着先作正方体ABCD-A"B"C"D",连结ACB‘D"就是一个正四面体,从中研究。易知正四面体体积为正方体的三分之一。

正四面体体积公式

{(根号3)*a}/6

正四面体内接球体积怎么求?

正四面体内切球的体积等于3分子4乘以π再乘以正四面体棱长的一半的立方因为球的体积公式是4/3πR^3(R是半径),正四面体的棱长正好是球的直径。外接球的直径等于正四面体的对角线,根据勾股定理可算出来。如果设这个正四面体的棱长为a,那么对角线的长等于a乘以根号3,再除以2就是半径,代入上面的公式即可。

正四面体体积公式怎么推

设ABCD边长为a,取BC中点E并连接EC,ED,以三角形ECD为底面分别以BE和AE为高计算BCDE和ACDE体积,两个体积相加就为正4面体体积.V =4分之根号2倍(a的3次方)

正四面体内接球体积怎么求? 外接球呢? 晕,是“切”.

正四面体内切球的体积等于3分子4乘以π再乘以正四面体棱长的一半的立方 因为球的体积公式是4/3πR^3(R是半径),正四面体的棱长正好是球的直径. 外接球的直径等于正四面体的对角线,根据勾股定理可算出来.如果设这个正四面体的棱长为a,那么对角线的长等于a乘以根号3,再除以2就是半径,代入上面的公式即可.

切面与坐标轴所为四面体体积为V=1/6abc,abc分别为三坐标轴的截距.这公式怎么来的,不懂.

四面体就是三棱锥,以任意两坐标轴所在面为底面,则另一坐标轴为高,利用锥体体积公式可得 V=Sh/3=1/2*ab*c/3=abc/6

高为2厘米的正四面体体积

棱长为a的正四面体的高公式:h=√6a/3棱长为a的正四面体体积公式:V=√2a^3/12------------------------------------所以,√6a/3=2求得a=√6代入体积公式V=√2(√6)^3/12=√3

四面体的表面积。体积,侧面积,底面面积,公式,不要用符号字母代替。

求N维空间的正四面体体积和中心。拿4维5维说明就好,当然要是有通用公式最好啦~

首先要说的是n维空间里没有正四面体,正四面体仅仅是他们在3维空间里的投影。四维空间里所谓的“正四面体”,实际上有5个三维面,10个二维面,10条棱,5个顶点。五维空间里则是由6个4维面,15个三维面,20个二维面,15条棱,6个顶点。设n+1维空间里的正n+2面体的公式为Vn+1,计算公式可以是古老的Vn+1=1/n×底面积×高,底面积可以是同样棱长n维空间里的正n+1面体的体积Vn,设高为hn+1,那么有hn+1=根号(a^2-(hn/n+1)^2)Vn+1=1/n × Vn hn+1

平行四面体体积为什么是立方体的六分之一?

平行四面体体积=底*高/3 底是立方体的一半(对角线切割),高与立方体的相等,所以体积是立方体的六分之一.

直角四面体体积公式,谁有

底乘高乘三分之一,直四面体就是特殊的棱锥

正三棱台上下底面分别为2和4,侧棱为2,体积多少

正三棱台,即底面与顶面均为正三角形,侧面都是等腰梯形的台体上下底面边长分别为2和4,还是上下底面面积分别为2和4,

已知空间四个点求体积

把四个点连起来,得到的应该是个四面体,然后根据四面体体积公式,和具体点坐标,求出四面体体积。

高中数学必修二的各种图形表面积体积计算公式,详细点,谢谢

高中数学合集百度网盘下载链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ?pwd=1234提取码:1234简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

求正多面体体积和表面积公式

这个问题我研究过的,体积算的过程很复杂,表面积还算简单,结论如下若a为正多面体的边长!各多面体的体积如下:V4=√2/12*a^3V6=a^3V8=√2/3*a^3V12=(15+7√5)/4*a^3V20=(15+5√5)/12*a^3各多面体的表面积如下:S4=√3*a^2S6=6*a^2S8=2√3*a^2S12=15/√(5-2√5)*a^2S20=5√3*a^2计算面积过程中遇到的问题中正五边形的面积为5/(4tan36)*a^2其中tan36=√(5-2√5)体积的推导在这里就不说了,太复杂了!

空间直角坐标系中四面体体积

四面体的面积为:底面积*高/3 任取一个面为底面,例如XOY平面,底面积为xy/2,而此面上的高就是z 所以体积为(xy/2)*z/3 = xyz/6
 首页 上一页  1 2 3 4 5 6 7  下一页  尾页