函数

sinx的反函数是什么?

y=sinx的反函数是y=arcsinx。解:因为y==sinx,那么x=arcsiny。则y==sinx的反函数为y=arcsinx。反三角函数是一种基本初等函数。它是反正弦arcsin x,反余弦arccos x,反正切arctan x,反余切arccot x,反正割arcsec x,反余割arccsc x这些函数的统称,各自表示其正弦、余弦、正切、余切 ,正割,余割为x的角。正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。以上内容参考:百度百科-反三角函数

sinx的反函数是什么?

sinx在第二象限意味着π/2≤x≤π而按照定义,arcsinx的范围是 -π/2≤arcsinx≤π/2所以这里x和arcsinx是不能直接对应的就是说,要对sin()求反函数必须把()里的项的范围变换到[-π/2,π/2]做变换 y=sinx=sin(π-x)则0≤π-x≤π/2故π-x=arcsinyx=π-arcsiny故反函数为arcsinx扩展资料为了使单值的反三角函数所确定区间具有代表性,常遵循如下条件:1、为了保证函数与自变量之间的单值对应,确定的区间必须具有单调性;2、函数在这个区间最好是连续的(这里之所以说最好,是因为反正割和反余割函数是间断的);3、为了使研究方便,常要求所选择的区间包含0到π/2的角;4、所确定的区间上的函数值域应与整函数的定义域相同。这样确定的反三角函数就是单值的,为了与上面多值的反三角函数相区别,在记法上常将Arc中的A改记为a,例如单值的反正弦函数记为arcsin x。

sin(x)的反函数是什么?

sin的反函数是:arcsinx。sin(arcsinx)=x。计算过程如下:设y=arcsinx,然后得出:x=sin(y),于是可得:sin(arcsinx)=sin(y),最后得出:sin(arcsinx)=x。sin(arcsinx)可以化简,化简后的结果是x设sin(arcsinx)=k,并设arcsinx=t,则有:sint=x。同时,将arcsinx代入题目条件有:sint=k因此有k=x。所以sin(arcsinx)=x。arcsinx是sinx的反函数,一个函数的反函数,再经过一次反函数操作就是它本身。反正弦函数正弦函数y=sin x在[-π/2,π/2]上的反函数,叫做反正弦函数。记作arcsinx,表示一个正弦值为x的角,该角的范围在[-π/2,π/2]区间内。定义域[-1,1] ,值域[-π/2,π/2]。

sinx反函数是什么意思。?

我给个解释,虽然时间晚了点。对正弦函数y=sin x,x∈R,其反函数是x=arc sin y。但是,还没完。同时规定(好像叫主值…的)了,x=arc sin y的定义域是y=[-1,1],值域是x=[-π/2,π/2]。那么,因为正弦函数的定义域是R,就会产生,当x取值在(-∞,-π/2]U[π/2,﹢∞)时,相应的反函数如何对应的问题。我的方法是,正弦函数也可以看做是一个规定了主值,即y=sin x,x∈[-π/2,π/2],当x取值在(-∞,-π/2]U[π/2,﹢∞)时,可以认为是x=t±nπ,n∈Z(整数)。所以,对于y=sin x,x∈[0,π]可以用一个分段函数g表示,有g=sin x,x∈[0,π/2]和g=sin (-x+nπ),x∈[-π/2,0],n∈Z。可见,对y=sin x来说,当x∈[π/2,π]时,y就可以用g=sin (-x+nπ),x∈[-π/2,0]来表示。那么,当x∈[π/2,π]时,arc sin y就等价于arc sin g。arc sin g=-x+nπ,就有x=nπ-arc sin g。可见,对正弦函数y=sin x,当xu2209[-π/2,π/2]时,其反函数就是x=nπ-arc sin y。至于n取什么值,就需要看x在什么范围了。本题中,x∈[π/2,π],则取n=1,有x=π-arc sin y。

1/sinx的原函数怎么求?

1/sinx的原函数求:1/sinxdx=积分:1/(2sinx/2cosx/2)dx=1/2积分:(sinx/2^2+cosx/2^2)/(sinx/2cosx/2)dx=1/2积分:(tanx/2+cotx/2)dx=1/2*[(-2)ln|cosx/2|+2ln|sinx/2|)+C=ln|sinx/2|-ln|cosx/2|+C几何意义和力学意义设f(x)在[a,b]上连续,则由 曲线y=f(x),x轴及直线x=a,x=b围成的曲边梯形的面积函数(指代数和——x轴上方取正号,下方取负号)是f(x)的一个原函数.若x为时间变量,f(x)为直线运动的物体的速度函数,则f(x)的原函数就是路程函数。

微积分中,正切、余切、余割等的原函数分别是什么

正切函数的原函数为:余切函数的原函数为:余割函数的原函数为:正切、余切、余割均是三角函数,在一个直角三角形中:正切函数=tanx=∠x的对边/∠x的邻边余切函数=cotx=∠x的邻边/∠x的对边余割函数=cosx=∠x的斜边/∠x的对边不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。三角函数一般用于计算三角形中未知长度的边和未知的角度,在导航、工程学以及物理学方面都有广泛的用途。扩展资料:其他三角函数的原函数正弦函数(sinx)的原函数为:余弦函数(cosx)的原函数为:正割函数(secx)的原函数为:在一个直角三角形中:正弦函数=sinx=∠x的对边/∠x的斜边余弦函数=cosx=∠x的邻边/∠x的斜边正割函数=secx=∠x的斜边/∠x的邻边参考资料来源:百度百科—积分公式参考资料来源:百度百科—三角函数

sinx/ x的原函数是什么?

类似于sinx/x,x/cosx,tanx/x,e^x/x等等函数式子的原函数∫xcosxdx=xsinx-∫sinxdx=xsinx+cosx+C扩展资料某一个函数中的某一个变量,此变量在变大(或者变小)的永远变化的过程中,逐渐向某一个确定的数值A不断地逼近而“永远不能够重合到A”(“永远不能够等于A,但是取等于A‘已经足够取得高精度计算结果)的过程中,此变量的变化,被人为规定为“永远靠近而不停止”、其有一个“不断地极为靠近A点的趋势”。求极限基本方法有1、分式中,分子分母同除以最高次,化无穷大为无穷小计算,无穷小直接以0代入;2、无穷大根式减去无穷大根式时,分子有理化;3、运用洛必达法则,但是洛必达法则的运用条件是化成无穷大比无穷大,或无穷小比无穷小,分子分母还必须是连续可导函数。4、用Mclaurin(麦克劳琳)级数展开,而国内普遍误译为Taylor(泰勒)展开。

三角函数的原函数及其导数

(sinx)^2的原函数为x/2-sin2x/4 导函数为sin2x(cosx)^2的原函数为x/2+sin2x/4 导函数为-sin2xsin2x的原函数为(sinx)^2 导函数为2cos2xcos2x的原函数为(sin2x)/2 导函数为-2sin2x

1/ sinx的原函数是什么?

1/sinx=cscxcscx原函数是ln|cscx-cotx|背公式吧

sinx的原函数有多少个

sinx的原函数只有一个,为-cosX+C。原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。原函数存在定理若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。

sinx的原函数是

你说的是导数方面的吧! sinx的原函数为-cosX+C

sinx的原函数是什么?

sinx/x 是典型的积不出来函数,是sinx/x的原函数不能用初等函数表示。原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。原函数存在定理:若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。

fx= sinx的原函数是什么?

f(x)的一个原函数是x,可能不止一个;x是fx的一个原函数,仅一个。对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。例如:sinx是cosx的原函数。扩展资料若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。

sinx的原函数怎么求?

有公式的∫sinxdx=-cosx+C

sinx的原函数是什么?

sin(x^2) 的原函数不是初等函数,没法用解析式显式表达 。这个是菲涅尔积分函数sin(x^2) 的原函数不是初等函数,积分是积不出来的。 该式是变上限函数,求导还是可以求的。扩展资料不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C

sinx/ x的原函数是什么?

函数sinx/x的原函数不是初等函数,所以不定积分 ∫sinx/x dx 没有办法用初等函数表示出来,这类积分我们通常称为是“积不出来”的;但是这个函数在[0,+∞)的广义积分(这是个有名的广义积分,称为狄里克雷积分)却是可以求得的,但不是用高等数学里介绍的普通方法得到的,∫sinx/x dx =π/2.扩展资料定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。百度百科 不定积分

∫(sinx) dx的原函数是什么?

∫sin^3(x) dx=∫sin^2(x)sin(x) dx=-∫(1-cos^2(x))dcosx=-∫dcosx+∫cos^2(x)dcosx=-cosx+cos^3(x)/3+C=cos^3(x)/3-cosx+C根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。扩展资料不定积分的公式∫ a dx = ax + C,a和C都是常数∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -1∫ 1/x dx = ln|x| + C∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 1∫ e^x dx = e^x + C∫ cosx dx = sinx + C∫ sinx dx = - cosx + C∫ cotx dx = ln|sinx| + C = - ln|cscx| + C∫ tanx dx = - ln|cosx| + C = ln|secx| + C∫ secx dx =ln|cot(x/2)| + C = (1/2)ln|(1 + sinx)/(1 - sinx)| + C = - ln|secx - tanx| + C = ln|secx + tanx| + C∫ cscx dx = ln|tan(x/2)| + C = (1/2)ln|(1 - cosx)/(1 + cosx)| + C = - ln|cscx + cotx| + C = ln|cscx - cotx| + C∫ sec^2(x) dx = tanx + C∫ csc^2(x) dx = - cotx + C∫ secxtanx dx = secx + C∫ cscxcotx dx = - cscx + C∫ dx/(a^2 + x^2) = (1/a)arctan(x/a) + C∫ dx/√(a^2 - x^2) = arcsin(x/a) + C∫ dx/√(x^2 + a^2) = ln|x + √(x^2 + a^2)| + C∫ dx/√(x^2 - a^2) = ln|x + √(x^2 - a^2)| + C∫ √(x^2 - a^2) dx = (x/2)√(x^2 - a^2) - (a^2/2)ln|x + √(x^2 - a^2)| + C∫ √(x^2 + a^2) dx = (x/2)√(x^2 + a^2) + (a^2/2)ln|x + √(x^2 + a^2)| + C∫ √(a^2 - x^2) dx = (x/2)√(a^2 - x^2) + (a^2/2)arcsin(x/a) + C

sinx的原函数是什么?

sinx的原函数是-cosx+c。(-cosx)'=sinx,所以sinx的原函数是-cosx+c。原函数是指对于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。原函数存在定理若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。

sinx的原函数是什么

方法如下,请作参考:

sinx的原函数是什么?

原函数是y=-cosx+c,其中c是常数

sinx的原函数是什么?

函数sinx/x的原函数不是初等函数,所以不定积分 ∫sinx/x dx 没有办法用初等函数表示出来,这类积分我们通常称为是“积不出来”的;但是这个函数在[0,+∞)的广义积分(这是个有名的广义积分,称为狄里克雷积分)却是可以求得的,但不是用高等数学里介绍的普通方法得到的,∫sinx/x dx =π/2.扩展资料定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分;若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。百度百科 不定积分

cosx和sinx的原函数分别是什么?

cosx的原函数是sinx,sinx的原函数是-cosx

sinx的一个原函数

f(x)的导函数是sinx,那么 f"(x) = sinx f(x) = ∫sinx dx = -cosx + c 我做过这个题,他问的是f(x)的一个原函数,而不是sinx的原函数,即sinx的原函数的一个原函数. ∫f(x)dx = ∫-cosxdx = -sinx + C",取了C"=1

sinx 的原函数是什么

-cosX+C

f(x)=sin|x|的原函数怎么求的?求大侠详解

x≥0时,f(x)=sinx,原函数是-cosx+C1. x<0时,f(x)=sin(-x)=-sinx,原函数是cosx+C2. 原函数在(-∞,+∞)内连续可导,所以原函数在x=0处连续可导,所以左右极限存在且相等,所以-1+C1=1+C2,C2=C1-2.所以f(x)=sin|x|的原函数是 -cosx+C,x≥0时; cosx-2+C,x<0时. 只要让C取定一个值,比如C=0,即可得到f(x)=sin|x|的一个具体的原函数: -cosx,x≥0时; cosx-2,x<0时.

Sinx的绝对值的原函数(不定积分)是什么?是怎么求出来的?

|sinx|在(-inf,+inf)上原函数存在。原函数可以分段表示,在[2kπ,2kπ+π)上为 -cosx+4k+C,在[2kπ+π,2kπ+2π)上为cosx+4k+2+C。曲线的形状类似于向上的阶梯。为分段函数:cosx x∈[2kπ,2kπ+π]-cosx x∈[2kπ+π,2kπ+2π]函数可导的条件:如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。不定积分的解释根据牛顿-莱布尼茨公式,许多函数的定积分的计算就可以简便地通过求不定积分来进行。这里要注意不定积分与定积分之间的关系:定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。

求sinx/x的原函数

具体回答如图:于一个定义在某区间的已知函数f(x),如果存在可导函数F(x),使得在该区间内的任一点都存在dF(x)=f(x)dx,则在该区间内就称函数F(x)为函数f(x)的原函数。扩展资料:若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。给定一个数集A,假设其中的元素为x。现对A中的元素x施加对应法则f,记作f(x),得到另一数集B。假设B中的元素为y。则y与x之间的等量关系可以用y=f(x)表示。把函数的表达式(无表达式的函数除外)中的“=”换成“<”或“>”,再把“Y”换成其它代数式,函数就变成了不等式,可以求自变量的范围。如果X和Y都是连续的线,则函数的图象有很直观表示注意两个集合X和Y的二元关系有两个定义:一是三元组(X,Y,G),其中G是关系的图;二是索性以关系的图定义。用第二个定义则函数f等于其图象。参考资料来源:百度百科——原函数

sinx的平方的原函数怎么求?

sinx的平方的原函数=∫(sinx)^2dx=1/2*∫(1-cos2x)dx=1/2[x+1/2*sin2x]+C=x/2+(sin2x)/4+C。值得注意的是:导数是一个数,是指函数f(x)在点x0处导函数的函数值,但通常也可以说导函数为导数,其区别仅在于一个点还是连续的点。导函数的几何意义是代表函数上某一点在该点处切线的斜率。函数在定义域中一点可导需要一定的条件,条件为函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件即极限存在它的左右极限存在且相等,推导而来的。一般地,设函数y=f(x)在某个区间内有导数,如果在这个区间y">0,那么函数y=f(x)在这个区间上为增函数;如果在这个区间y"<0,那么函数y=f(x)在这个区间上为减函数;如果在这个区间y"=0,那么函数y=f(x)在这个区间上为常数函数。一般地,设函数y=f(x)在x=x0及其附近有定义,如果f(x0)的值比x0附近所有各点的函数值都大,我们说f(x0)是函数y=f(x)的一个极大值;如果f(x0)的值比x0附近所有各点的函数值都小,我们说f(x0)是函数y=f(x)的一个极小值。极大值与极小值统称极值。

sinx整体的4次方,怎么求原函数

见图......

sinX/X的原函数是什么

光说个原函数,可没有人能回答。傅里叶变换、拉普拉斯变换里等变换里,都有原函数和像函数。因此,必须指明变换,才能确定原函数。若楼主的问题是微积分问题,那么我可以告诉你,你要的原函数数学上叫积分正弦函数,简记为Si(x),是积不出的,即它不能用基本初等函数经有限次四则运算和复合表达出来。楼主若需计算此函数的数值,可以采用楼上介绍的幂级数解法。

f(x)的导函数是sinx,其中一个原函数为什么是1-sinx

简单分析一下即可,详情如图所示

sinx的绝对值的原函数怎么求?哪位高手指点一下

|sinx|在(-inf,+inf)上原函数存在。原函数可以分段表示,在[2kπ,2kπ+π)上为 -cosx+4k+C,在[2kπ+π,2kπ+2π)上为cosx+4k+2+C。曲线的形状类似于向上的阶梯。为分段函数cosx x∈[2kπ,2kπ+π]-cosx x∈[2kπ+π,2kπ+2π]函数可导的条件:如果一个函数的定义域为全体实数,即函数在其上都有定义。函数在定义域中一点可导需要一定的条件:函数在该点的左右导数存在且相等,不能证明这点导数存在。只有左右导数存在且相等,并且在该点连续,才能证明该点可导。可导的函数一定连续;连续的函数不一定可导,不连续的函数一定不可导。

sinx的平方的原函数是多少?

sinx的平方的原函数是x/2-sin(2x)/4+C∫(sinx)^2dx=∫[(1-cos2x)/2]dx=x/2-sin(2x)/4+C原函数存在定理若函数f(x)在某区间上连续,则f(x)在该区间内必存在原函数,这是一个充分而不必要条件,也称为“原函数存在定理”。函数族F(x)+C(C为任一个常数)中的任一个函数一定是f(x)的原函数,故若函数f(x)有原函数,那么其原函数为无穷多个。例如:x3是3x2的一个原函数,易知,x3+1和x3+2也都是3x2的原函数。因此,一个函数如果有一个原函数,就有许许多多原函数,原函数概念是为解决求导和微分的逆运算而提出来的。

绝对值sinx的原函数是什么

是问你绝对值sinx是如何画出来的,首先看到绝对值这个函数一定都是大于零的值,/sinx/就是把sinx的图像先做出来,然后把x轴下方的对应到上方即可,所以说它的原函数就是sinx

正弦函数三次方的原函数是多少

正弦函数三次方的原函数是-cosx+1/3*(cosx)^3+C。解:令F(x)为(sinx)^3的原函数。那么F(x)=∫(sinx)^3dx=∫(sinx)^2*sinxdx=-∫(1-(cosx)^2)/d(cosx)=∫d(cosx)+1/2∫(cosx)^2d(cosx)=-cosx+1/3*(cosx)^3+C即(sinx)^3的原函数是-cosx+1/3*(cosx)^3+C。扩展资料:1、三角函数公式(sinA)^2=(1-cos2A)/2、(cosA)^2=(cos2A-1)/2、(sinA)^2+(cosA)^2=1、sin2A=2sinAcosA2、不定积分凑微分法通过凑微分,最后依托于某个积分公式。进而求得原不定积分。例:∫cos3xdx=1/3∫cos3xd(3x)=1/3sin3x+C直接利用积分公式求出不定积分。3、常用的不定积分公式∫1dx=x+C、∫1/xdx=ln|x|+C、∫cosxdx=sinx+C、∫sinxdx=-cosx+C参考资料来源:百度百科-不定积分

导数|sinx|的原函数是什么

y=sinx*sinx=[1-cos(2x)]/2f(x)=[x-sin(2x)/2]/2求导数的原函数是有几种常见方法的,在大学的微积分里会学到,在高中要求不高,只要会凑出几种基本函数就可以了,而且,并不是所有的函数都可以求出原函数来的,像y=sin(x^2)就没法用基本函数表示出来.

设f(x)的导数为sinx,则f(x)的原函数的是什么,怎么算呢

-sinx+cx +d∵(-cosx)"=sinx∴f(x)=-cosx+c∵(-sinx+cx)"=-cosx+c∴f(x)原函数是-sinx+cx +d不定积分的公式1、∫ a dx = ax + C,a和C都是常数2、∫ x^a dx = [x^(a + 1)]/(a + 1) + C,其中a为常数且 a ≠ -13、∫ 1/x dx = ln|x| + C4、∫ a^x dx = (1/lna)a^x + C,其中a > 0 且 a ≠ 15、∫ e^x dx = e^x + C6、∫ cosx dx = sinx + C7、∫ sinx dx = - cosx + C8、∫ cotx dx = ln|sinx| + C = - ln|cscx| + C

为什么sinx是cosx的原函数呢?

∫sinxdx=-cosx+C ----sinx的原函数; ∫cosxdx=sinx+C ----cosx的原函数. 因为dsinx=conxdx.,也就是说cosx是由对sinx微分得来的.故cosx的原函数是sinx.

如何求sinx/ x的原函数?

sinx/x的原函数不是初等函数,即∫sinx/x*dx“积不出”。故原题不能通过通常的方法求定积分可以由泰勒展开式来做:sinx=∑[n=1,∞](-1)^(n-1)*x^(2n-1)/(2n-1)!sinx/x=∑[n=1,∞](-1)^(n-1)*x^(2n-2)/(2n-1)!∫sinx/x*dx=∑[n=1,∞](-1)^(n-1)*x^(2n-1)/[(2n-1)*(2n-1)!]+C∫[0,x0]sinx/x*dx=∑[n=1,∞](-1)^(n-1)*x0^(2n-1)/[(2n-1)*(2n-1)!]不定积分是函数f(x)的一个原函数,我们把函数f(x)的所有原函数F(x)+C(C为任意常数)叫做函数f(x)的不定积分,记作,即∫f(x)dx=F(x)+C.其中∫叫做积分号,f(x)叫做被积函数,x叫做积分变量,f(x)dx叫做被积式,C叫做积分常数,求已知函数不定积分的过程叫做对这个函数进行积分。注:∫f(x)dx+c1=∫f(x)dx+c2, 不能推出c1=c2。

xsinx的原函数是什么?

xsinx的原函数是:∫xsinxdx=-∫xdcosxdx=-xcosx+∫cosxdx=-xcosx+sinx+C所以xsinx的原函数是f(x)=-xcosx+sinx+C (C是任意常数)。原函数的定理:原函数的定理是函数f(x)在某区间上连续的话,那么f(x)在这个区间里必会存在原函数。这是属于充分不必要条件,还被叫做是原函数存在定理,要是函数有原函数的话,那它的原函数为无穷多个。举个例子,已知作直线运动的物体,在任一时刻t的速度为v=v(t),要求它的运动规律 ,就是求v=v(t)的原函数。

请问(sinx)的平方的原函数是什么?

∫(sinx)^2dx=∫[(1-cos2x)/2]dx=x/2-sin(2x)/4+C.

三角函数的高次的原函数怎么算? 我记得有公式,比如(sinx)的n次方的原函数

高次的三角函数的原函数一般都是通过不断地将次,然后进行积分的。不过可以通过记下sinx和cosx的高次函数的积分公式,帮助快速解题。公式如下:扩展资料:1.三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。2.三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。3.常见的三角函数包括正弦函数、余弦函数和正切函数。在航海学、测绘学、工程学等其他学科中,还会用到如余切函数、正割函数、余割函数、正矢函数、余矢函数、半正矢函数、半余矢函数等其他的三角函数。不同的三角函数之间的关系可以通过几何直观或者计算得出,称为三角恒等式。参考资料:百度百科-三角函数

sinx/x的原函数是什么?

sinx/x广义积分是π/2。函数sinx/x的原函数不是初等函数,所以不定积分∫sinx/x dx没有办法用初等函数表示出来,这类积分我们通常称为是“积不出来”的,其在[0,+∞)区间上可以求得广义积分。sinx/x这个函数在[0,+∞)的广义积分(这是个有名的广义积分,称为狄里克雷积分)是可以求得的,但不是用高等数学里介绍的普通方法得到的,∫sinx/x dx =π/2。定积分是一个数,而不定积分是一个表达式,它们仅仅是数学上有一个计算关系。一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。

sinx函数的周期是多少?

当n为偶数周期为π,当n为奇数周期为2π。sinx函数,即正弦函数,三角函数的一种。正弦函数是三角函数的一种。对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sinx,这样,对于任意一个实数x都有唯一确定的值sinx与它对应,按照这个对应法则所建立的函数,表示为y=sinx,叫作正弦函数。图像性质:1、单调性:在[-(π/2)+2kπ,(π/2)+2kπ],k∈Z上是增函数;在[(π/2)+2kπ,(3π/2)+2kπ],k∈Z上是减函数。2、对称性:关于直线x=(π/2)+kπ,k∈Z对称;关于点(kπ,0),k∈Z对称。3、最值和零点:当x=2kπ+(π/2) ,k∈Z时,y(max)=1;当x=2kπ+(3π/2),k∈Z时,y(min)=-1。

y= sinx是周期函数吗?

函数Y=SINX的绝对值是周期函数,周期为π。y=sinx的周期为2πy=|sinx|的图像即为y=sinx的图像在x轴上部分保持不动,在x轴下方部分对称反转到x轴上方。所以,y=|sinx|的最小正周期为2π/2=π。扩展资料正弦函数:y=sinx(1)定义域:基本正弦函数定义域为R;(2)值域:[-1,1];(3)奇偶性:三角函数中,判断奇偶性的前提是定义域是否关于原点对称。正弦函数的定义域和图像关于原点对称,它为奇函数。(4)对称性:正弦、余弦函数的图象既是中心对称图形,又是轴对称图形,它们的对称轴是过函数图象的最高(低)点且垂直于x轴的直线,对称中心是图象与x轴的交点,可根据此思想求正余弦图象的对称轴和对称中心。(5)单调性:在[-π/2+2kπ,π/2+2kπ]内为单调递增,在[π/2+2kπ,3π/2+2kπ]内为递减。(6)周期性:周期为2π。

函数y=sinx的最小正周期为

2u03c0T=2u03c0/u03c9=2u03c0/1=2u03c0

sinx在复平面是不是周期函数

sinx在复平面是周期函数。sinx是周期为2π的周期函数,那么sinx=sin(2kπ+x)可以得到sin(sinx)=sin[sin(2kπ+x)]。sinx函数,即正弦函数,三角函数的一种。正弦函数是三角函数的一种。对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sinx。正弦函数对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sinx,这样,对于任意一个实数x都有唯一确定的值sinx与它对应,按照这个对应法则所建立的函数,表示为y=sinx,叫做正弦函数。

sinx五次方函数还是周期函数吗

f(x) = (sin x)^n当:n为奇数时,f(x)的周期为:2π 。当:n为偶数时,f(x)的周期为:π 。因此:(sin x)^5 的周期为:2π。f(x) = (sin x)^n当:n为奇数时,f(x)的周期为:2π 。当:n为偶数时,f(x)的周期为:π 。因此:(sin x)^5 的周期为:2π。没有,若有最小正周期为t>0,则sin(5x^2)=sin(5(x-t)^2),sin(5x^2)-sin(5(x-t)^2)=02cos(5[x^2+(x-t)^2]/2)sin(5[x^2-(x-t)^2]/2)=0;2cos(5[x^2+(x-t)^2]/2)sin(5[2tx-t^2]/2)=0;sin(5[2tx-t^2]/2)不恒为0;则2cos(5[x^2+(x-t)^2]/2)恒为0;5[x^2+(x-t)^2]/2=kπ/2(k为整数),显然不成立. 故无函数周期.熟悉指数和对数函数的基本性质,它们的图象,做指数和对数函数题时根据具体题目判断用图形法,还是代数法,一般代数法较常用.如y=e^x,z=loga(b),一般转换成指数形式比较简单z=loga(b)可变为a^z=b,在分析判断,会做指数题,一般来说对数题也就会了的.

三角函数周期性怎么求

三角函数周期性这样求:1、定义法:题目中提到f(x)=f(x+C),其中C为已知量,则C为这个函数的一个最小周期。2、公式法:将三角函数的函数关系式化为:y=Asin(wx+B)+C或y=Acos(wx+B)+C,其中A,w,B,C为常数。则周期T=2π/w,其中w为角速度,B为相角,A为幅值。若函数关系式化为:Acot(wx+B)+C或者tan(wx+B)+C,则周期为T=π/w。3、定理法:如果f(x)是几个周期函数代数和形式的,即是:函数f(x)=f1(x)+f2(x),而f1(x)的周期为T1, f2(x)的周期为T2,则f(x)的周期为T=P2T1=P1T2,其中P1、P2N,且(P1、P2)=1。sinx周期为2π/1=2π。|sinx|周期为1/2*(2π )=π。sin2x周期为2π/2=π。|sin2x|周期为1/2*π=π/2。sin1/2x周期为2π/(1/2)= 4π。|sin1/2x|周期为1/2*(4π)=2π。sin(x+π)周期与sinx周期相同(平移不改变周期),为2π。|sin(x+π)||周期为1/2*(2π)= π。sin(x+2π)周期与sinx周期相同,为2π。|sin(x+2π|周期为1/2*(2π)= π。cos周期变化规律与sin完全一样,只是tanx周期为π ,atan(ωx+θ)周期为π/ω,但其绝对值,x轴下方部分翻上去以后与原有x轴上方部分不同,故其周期不变,即 |tanx|周期为π 。

sinx的三角函数是多少呢?

1、sinx的图像如下,sinx的图像是一个周期图像,周期是2π。幅值是-1到1 。2、tanx和x的图像如下,正切函数图像,周期是π。幅值是负无穷到正无穷。扩展资料:正切值的应用:1、正切值在数值上与坡度相等,坡度=正切值x100%。2、三角函数在复数领域有较为广泛的应用,在物理学方面也有一定的应用。3、三角函数在勘测地形、勘探矿产方面发挥着重要的作用。4、三角函数还用于通过视角来测量建筑物或山峰的高度。

正弦函数的周期和频率分别为多少?

当n为偶数周期为π,当n为奇数周期为2π。sinx函数,即正弦函数,三角函数的一种。正弦函数是三角函数的一种。对于任意一个实数x都对应着唯一的角(弧度制中等于这个实数),而这个角又对应着唯一确定的正弦值sinx,这样,对于任意一个实数x都有唯一确定的值sinx与它对应,按照这个对应法则所建立的函数,表示为y=sinx,叫作正弦函数。图像性质:1、单调性:在[-(π/2)+2kπ,(π/2)+2kπ],k∈Z上是增函数;在[(π/2)+2kπ,(3π/2)+2kπ],k∈Z上是减函数。2、对称性:关于直线x=(π/2)+kπ,k∈Z对称;关于点(kπ,0),k∈Z对称。3、最值和零点:当x=2kπ+(π/2) ,k∈Z时,y(max)=1;当x=2kπ+(3π/2),k∈Z时,y(min)=-1。

正弦函数y= sinx和y= cosx有几个周期

y=sinx和y=cosx的周期都是2π;y=Asin(ωx+φ)+k和y=Acos(ωx+φ)+k的周期是2π/|ω|。正弦函数f(x)=sinx(x∈R)最小正周期:y=sinx T=2π余弦函数f(x)=cosx(x∈R)最小正周期:y=sinx T=2π

求函数y=sinx的绝对值的周期

分四种情况,去掉绝对值当x∈[0,π/2]时,y=sinx+cosx=√2sin﹙x+π/4﹚当x∈[π/2,π]时,y=sinx-cosx=√2sin﹙x-π/4﹚当x∈[π,3π/2]时,y=-sinx-cosx=-√2sin﹙x+π/4﹚当x∈[3π/2,2π]时,y=-sinx+cosx=-√2sin﹙x-π/4﹚做出以上四种图像,可知原函数的周期为π/2

三角函数的周期性 指导一下 谢谢

书上都有的,不行的话你去问老师,这东东我也不会打分数什么的。看不懂别找我呀。sinx 2πsin2x T=2π/W W是X的系数 这个就是代公式 这个就是π了以此类推 。cos也是一样的 ,但是tan是 T=π/W

正弦函数y=sinx的最小正周期是多少?

正弦函数y=sinx的最小正周期是2π。

正弦函数和余弦函数周期是多少呢?

y=sinx和y=cosx的周期都是2π;y=Asin(ωx+φ)+k和y=Acos(ωx+φ)+k的周期是2π/|ω|。正弦函数f(x)=sinx(x∈R)最小正周期:y=sinx T=2π余弦函数f(x)=cosx(x∈R)最小正周期:y=sinx T=2π

正弦函数y=Sinx的周期是( ) 最大值是( ) 最小值( )

正弦函数的周期为2π 最大值为1 最小值-1

正弦函数的周期又是什么东西?,,

周期:即相同图像重复出现的最小距离正弦函数的周期:sinx,周期为2πsin2x,周期π。。。sinnx,周期2π/n

三角函数的周期

sinx的周期是2π,而cos2x的周期是2π/2=π,所以f的周期是2π(两个周期函数的代数运算仍然是周期函数,且周期是最大的那个周期)

sin的平方是周期函数吗

y=(sinx)^2是周期函数,函数周期是π

sin(sinx)为什么是周期函数?

因为sinx是周期函数。你可以这么想设f(x)=sinx那么F(f(x))=sin(sinx)这是一个复合函数,那么我们知道根据复合函数的定义,有这么一个定理复合函数里面如果是周期函数那么这个函数也是一个复合函数。

sin,cos,tan,三个函数的0度,90度,180度,270度,360度各是多少

sin0°=0,sin90°=1,sin180°=0,sin270°=﹣1,sin360°=0 ;cos0°=1,cos90°=0,cos180°=﹣1,cos270°=0,cos360°=1 ;tan0°=0,tan90°不存在,tan180°=0,tan270°不存在,tan360°=0拓展资料:三角函数是数学中属于初等函数中的超越函数的一类函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。三角函数的诱导公式(六公式)公式一: 设α为任意角,终边相同的角的同一三角函数的值相等:sin(α+k*2π)=sinα (k为整数)cos(α+k*2π)=cosα(k为整数)tan(α+k*2π)=tanα(k为整数)公式二设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin[(2k+1)π+α]=-sinαcos[(2k+1)π+α]=-cosαtan[(2k+1)π+α]=tanαcot[(2k+1)π+α]=cotα公式三任意角α与-α的三角函数值之间的关系:sin(2k-α)=-sinαcos(2k-α)=cosαtan(2k-α)=-tanαcot(2k-α)=-cotα公式四利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin[(2k+1)π-α]=sinαcos[(2k+1)π-α]=-cosαtan[(2k+1)π-α]=-tanαcot[(2k+1)π-α]=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2kπ-α)=-sinαcos(2kπ-α)=cosαtan(2kπ-α)=-tanαcot(2kπ-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα诱导公式 记背诀窍:奇变偶不变,符号看象限。或者也可以这样记:分变整不变,符号看象限。

各角度的三角函数值是多少?

常用角的三角函数值是:30°,45°,60°。这三个角的正弦值和余弦值的共同点是:分母都是2,若把分子都加上根号,则被开方数就相应地变成了1,2,3。积化和差公式:sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)]cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)]cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)]sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]和差化积公式:sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2]sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2]cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]

三角函数中的sin60度等于多少?

cos60度等于二分之一以上是特殊的三角函数值扩展资料常用三角函数值1、sin0=sin0°=0,cos0=cos0°=1,tan0=tan0°=0。2、sin15=0.650,sin15°=0.259,cos15=-0.759。3、cos15°=0.966,tan15=-0.855,tan15°=0.268。4、sin30°=1/2,cos30°=0.866。5、 tan30°=0.577,sin45°=0.707。

三角函数特殊角分别等于多少?

画个三角图就可以一目了然sin0=0sin30=1/2sin45=(根号2)/2sin60=(根号3)/2sin90=1sin180=0cos0=1cos30=(根号3)/2cos45=(根号2)/2cos60=1/2cos90=0cos180=-1tan0=0tan30=1/(根号3)tan45=1tan60=(根号3)tan90不存在或等于无穷tan180=0cot0不存在或等于无穷cot30=根号3cot45=1cot60=1/根号3cot90=0cot180不存在或等于无穷sec0=1sec30=2/根号3sec45=根号2sec60=2sec90不存在或等于无穷sec180=-1csc0不存在或等于无穷csc30=2csc45=根号2csc60=2/根号3csc90=1csc180不存在或等于无穷

正弦函数的周期是?

因为f(x)的定义域为[0,1],所以0≤sinx≤1,因为sinx是以2π为周期的函数,且在0到π区间内满足0≤sinx≤1,所以f(sinx)的定义域是[2kπ,2kπ+π],k属于整数。正弦函数y=sinx,在直角三角形ABC中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正弦是sinA=a/c,即sinA=BC/AB。正弦函数是f(x)=sin(x)。扩展资料正弦函数y=sinx;余弦函数y=cosx。1、单调区间正弦函数在[-π/2+2kπ,π/2+2kπ]上单调递增,在[π/2+2kπ,3π/2+2kπ]上单调递减。余弦函数在[-π+2kπ,2kπ]上单调递增,在[2kπ,π+2kπ]上单调递减。2、奇偶性正弦函数是奇函数。余弦函数是偶函数。3、对称性正弦函数关于x=π/2+2kπ轴对称,关于(kπ,0)中心对称。余弦函数关于x=2kπ对称,关于(π/2+kπ,0)中心对称。4、周期性正弦余弦函数的周期都是2π。

正弦函数的周期是多少?

周期公式sinx的函数周期公式T=2π,sinx是正弦函数,周期是2πcosx的函数周期公式T=2π,cosx是余弦函数,周期2π。tanx和cotx的函数周期公式T=π,tanx和cotx分别是正切和余切。secx和cscx的函数周期公式T=2π,secx和cscx是正割和余割。拓展资料函数周期性公式及推导:f(x+a)=-f(x)周期为2a。证明过程:因为f(x+a)=-f(x),且f(x)=-f(x-a),所以f(x+a)=f(x-a),即f(x+2a)=f(x),所以周期是2a。f(x+a)=-f(x)那么f(x+2a)=f[(x+a)+a]=-f(x+a)=-[-f(x)]=f(x)所以f(x)是以2a为周期的周期函数。f(x+a)=1/f(x)那么f(x+2a)=f[(x+a)+a]=1/f(x+a)=1/[1/f(x)]=f(x)所以f(x)是以2a为周期的周期函数。f(x+a)=-1/f(x)那么f(x+2a)=f[(x+a)+a]=-1/f(x+a)=1/[-1/f(x)]=f(x)所以f(x)是以2a为周期的周期函数。所以得到这三个结论。2函数的周期性设函数f(x)在区间X上有定义,若存在一一个与x无关的正数T,使对于任一x∈X,恒有f(x+T)=f(x)则称f(x)是以T为周期的周期函数,把满足上式的最小正数T称为函数f(x)的周期。二、周期函数的运算性质:①若T为f(x)的周期,则f(ax+b)的周期为T/al。②若f(x),g(x)均是以T为周期的函数,则f(X)+g(X)也是以T为周期的函数。③若f(x),g(x)分别是以T1,T2,T1≠T2为周期的函数,则f(x)+g(x)是以T1,T2的最小公倍数为周期的函数。

cos,tan,sin0度,90,180分别是多少。刚学高一任意角的三角函数。怎么推算出来的

根据任意角三角函数的定义,在单位圆中角A的顶点与原点重合始边与x轴正半轴重合,角A终边与单位元交点坐标为(x,y)则sinA=y,cosA=x,tanA=y/x0度始边与终边重合,交点坐标为(1,0)则sin0°=0,cos0°=1,tan0°=090°的终边与单位圆的交点坐标为(0,1)则sin90°=1,cos90°=0,tan90°没意义180°角的终边与单位圆交点坐标为(-1,0)则sin180°=0,cos180°=-1,tan180°=0扩展资料:在直角三角形中,当平面上的三点A、B、C的连线,AB、AC、BC,构成一个直角三角形,其中∠ACB为直角。对∠BAC而言,对边a=BC、斜边c=AB、邻边b=AC。如果一个函数f(x)的所有周期中存在一个最小的正数,那么这个最小的正数就叫做f(x)的最小正周期。例如,正弦函数的最小正周期是2π。对于正弦函数y=sin x,自变量x只要并且至少增加到x+2π时,函数值才能重复取得。正弦函数和余弦函数的最小正周期是2π。在Kπ/2中如果K为偶数时函数名不变,若为奇数时函数名变为相反的函数名。正负号看原函数中α所在象限的正负号。关于正负号有个口诀;一全正,二正弦,三两切,四余弦,即第一象限全部为正,第二象限角,正弦为正,第三象限,正切和余切为正,第四象限,余弦为正。参考资料来源:百度百科——三角函数

sin三角函数对照表是什么?

如图所示:90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。90°的偶数倍+α的三角函数与α的三角函数绝对值相同。也就是“奇余偶同,奇变偶不变”。sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotαsec(2kπ+α)=secαcsc(2kπ+α)=cscα三角函数化简与求值时需要的知识储备:1、熟记特殊角的三角函数值;2、注意诱导公式的灵活运用;3、三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。以上内容参考:百度百科——三角函数

三角函数加减法公式是什么?

三角函数加减法公式有如下:sin(α+β)=sinαcosβ+cosαsinβ。sin(α-β)=sinαcosβ-cosαsinβ。cos(α+β)=cosαcosβ-sinαsinβ。cos(α-β)=cosαcosβ+sinαsinβ。三角函数公式相关:三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。

下列三角函数各等于多少?为什么呢?sin0、cos0、tan0

sin0度等于0,cos0度等于1,tan0度等于0; sin90度等于1,cos90度等于0,tan90度不存在。sin、cos和tan都有个图,就是那个2派(360度)一个周期的

公式:sin方A-sin方B=? 三角函数部分的,这个推导公式是什么?

你是想表达什么意思,比如是与面积还是与边长抑或是与cos tan 等之间的联系 sin^(2)x=(1-cos2x)/2 =1-cos^(2)x

sin的三角函数公式是什么

sin(α-β)=sinαcosβ-cosαsinβsin(α-β)=sinαcosβ-cosαsinβcos(α+β)=cosαcosβ-sinαsinβcos(α-β)=cosαcosβ+sinαsinβ扩展资料:两角和的公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)cot(A+B)=(cotAcotB-1)/(cotB+cotA) cot(A-B)=(cotAcotB+1)/(cotB-cotA)

三角函数的所有公式

三角函数公式有积化和差公式、和差化积公式、三倍角公式、正弦二倍角公式、余弦二倍角公式、余弦定理等。1积化和差公式。sinα·cosβ=(1/2)*[sin(α+β)+sin(α-β)];cosα·sinβ=(1/2)*[sin(α+β)-sin(α-β)];cosα·cosβ=(1/2)*[cos(α+β)+cos(α-β)];sinα·sinβ=-(1/2)*[cos(α+β)-cos(α-β)]2、和差化积公式。sinα+sinβ=2sin[(α+β)/2]·cos[(α-β)/2];sinα-sinβ=2cos[(α+β)/2]·sin[(α-β)/2]cosα+cosβ=2cos[(α+β)/2]·cos[(α-β)/2];cosα-cosβ=-2sin[(α+β)/2]·sin[(α-β)/2]3三倍角公式。sin3α=3sinα-4sin^3α:cos3α=4cos^3α-3cosα4两角和与差的三角函数关系sin(α+β)=sinαcosβ+cosαsinβ;sin(α-β)=sinαcosβ-cosαsinβ;cos(α+β)=cosαcosβ-sinαsinβ;cos(α-β)=cosαcosβ+sinαsinβ;tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ);tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)

三角函数的问题 求高人

这个题目选B,f(x)的最小正周期为π,最大值为4。如图

sin函数有几个公式?

sin计算公式有:sin(A+B)=sinAcosB+cosAsinB、sin(A-B)=sinAcosB-sinBcosA、cos(A+B)=cosAcosB-sinAsinB、cos(A-B)=cosAcosB+sinAsinB。正弦(sine),数学术语,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。正弦在生活中的应用1、声音的波动:声音可以看作一种波动,而正弦函数可以用来描述波动的形态。例如,正弦函数可以用来描述各种乐器发出的声音的波形。2、电信号的传输:正弦函数也可以用来描述电信号的传输,例如,无线电、电话和互联网中的数据都可以转化为正弦波形的电信号进行传输。3、天文学:正弦函数可以用来描述天体的运动,例如,太阳、月亮和行星等天体的位置与时间之间的关系就可以用正弦函数描述。4、物理学:正弦函数也可以用来描述物理现象,例如,波的传播、振动、交替电流等。5、数学:正弦函数是三角函数中的一种,它在数学中也有广泛的应用,例如,用于解决三角形的边长和角度的问题,以及解决周期性变化的问题等。

三角函数与反三角函数的关系公式

三角函数与反三角函数的关系公式:sin(A+B)=sinAcosB+cosAsinBsin(A-B)。三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。在数学分析中,三角函数也被定义为无穷级数或特定微分方程的解,允许它们的取值扩展到任意实数值,甚至是复数值。含义反三角函数是一种基本初等函数。它是反正弦arcsinx,反余弦arccosx,反正切arctanx,反余切arccotx,反正割arcsecx,反余割arccscx这些函数的统称,各自表示其反正弦、反余弦、反正切、反余切,反正割,反余割为x的角。反三角函数是一类初等函数。指三角函数的反函数。由于基本三角函数具有周期性,所以反三角函数是多值函数。这种多值的反三角函数包括:反正弦函数、反余弦函数、反正切函数、反余切函数、反正割函数、反余割函数,分别记为Arcsinx,Arccosx,Arctanx,Arccotx,Arcsecx,Arccscx。单位圆定义六个三角函数也可以依据半径为1中心为原点的单位圆来定义。单位圆定义在实际计算上没有大的价值;实际上对多数角它都依赖于直角三角形。但是单位圆定义的确允许三角函数对所有正数和负数辐角都有定义,而不只是对于在0和π/2弧度之间的角。

三角函数的公式

三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数

关于三角函数公式

无论是asinx+bcosx还是asinx-bcosx都等于根号下(a方+b方)sin(x+ρ)不过要主义P的取值不同,其中TAN(P)=B/A而且角P所在的象限与(A,B)这个点所在的象限相同,然后就可以将P求出来了变形后的X的值包括符号与原式中的X完全一样

三角函数的计算公式?

三角函数的计算公式?三角函数的计算公式有:正弦函数的计算公式是 sin(x)=y,余弦函数的计算公式是 cos(x)=y,正切函数的计算公式是 tan(x)=y,反正弦函数的计算公式是 arccos(x)=y,反余弦函数的计算公式是 arcsin(x)=y,反正切函数的计算公式是 arctan(x)=y。
 首页 上一页  4 5 6 7 8 9 10 11 12 13 14  下一页  尾页