三角形的外接圆怎么画
先求出三角形的外心。再以外心为圆心,外心距三角形任意一个顶点的距离长为半径,就可画出外接圆!(外心求法:做出三角形任意两个内角的角平分线,角平分线的交点即为三角形外接圆的圆心)
三角形的外接圆有什么特点
锐角三角形外心在三角形内部. 直角三角形外心在三角形斜边中点上. 钝角三角形外心在三角形外. 有外心的图形,一定有外接圆(各边中垂线的交点,叫做外心) 外接圆圆心到三角形各个顶点的线段长度相等 过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心 在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)也可能在三角形边上(如直角三角形) 过不在同一直线上的三点可作一个圆(且只有一个圆)
三角形外接圆半径公式推导是什么?
三角形外接圆半径公式推导:三角形的面积记作△,三边长分别是a、b、c,外接圆半径为R,那么△=abc/4R;R=abc/4△。因为△=(1/2)ah=(1/2)absinC=(1/2)ab·c/(2R)=abc/4R。直角三角形的外心(即三边垂直平分线交点)在斜边的中点上,因此直角三角形的外接圆半径就等于斜边的一半。相关介绍:与多边形各顶点都相交的圆叫做多边形的外接圆。 三角形有外接圆,其他的图形不一定有外接圆。 三角形的外接圆圆心是任意两边的垂直平分线的交点。 三角形外接圆圆心叫外心。即做三角形三条边的垂直平分线(两条也可,两线相交确定一点)。以线段为例,可以看作是三角形一边。分别以两个端点为圆心适当长度(相等)为半径做圆(只画出与线段相交的弧即可),再分别以两交点为圆心,等长为半径(保证两圆相交)做圆,过最后的两个圆的两个交点做直线,这条直线垂直且平分这条线段即线段的垂直平分线。
三角形外接圆的圆心是什么和三角形的内切圆的圆心是什么
三角形外接圆的圆心是三边中垂线的交点;三角形的内切圆的圆心是三个角角平分线的交点。
知道一个三角形怎样求它的外接圆
已知:ΔABC,求作:ΔABC的外接圆O,作法:1、分别作AB、BC的垂直平分线,相交于O,2、以O为圆心,OA为半径画圆,则圆O为所求。
三角形外接圆的画法依据是( )。
【答案】:B三角形外接圆是与三角形各顶点都相交的圆,三角形的外接圆圆心是任意两边的垂直平分线的交点,所以三角形外接圆的画法依据是线段的垂直平分线上任意一点到线段两端的距离相等。C项中,三角形内角的平分线上任意一点到角的两边距离相等是三角形内切圆的画法依据。A,D两项的说法本身就有误。故本题选B。
三角形的外接圆定义
三角形外接圆定义与三角形三个顶点都相交的圆叫做三角形的外接圆。注意三角形的外接圆得圆心是三角形三边垂直平分线的交点。
三角形外接圆,圆的内接三角形,外切三角形,三角形的内切圆如何区分?
三角形外接圆:三角形在 圆内,且顶点都在圆上 圆的内接三角形:说明圆是三角形的外接圆,强调三角形在圆内. 外切三角形 说明是三角形的内切圆,三角形在外面 三角形的内切圆:圆在 三角形内,三边与圆相切
三角形外角和是多少?
多变三角形外角和公式:外角和=N*180-(N-2)*180=360度。请点击输入在不考虑角度方向的情况下,所述的N边形,仅为任意‘凸"多边形。当考虑角度方向的时候,论述也适合凹多边形。外角由一条边与另一条边的延长线组成角。多边形的外角和为360度,外角越多,越接近圆。多变三角形外角和公式:外角和=N*180-(N-2)*180=360度。在不考虑角度方向的情况下,所述的N边形,仅为任意‘凸"多边形。当考虑角度方向的时候,论述也适合凹多边形。外角由一条边与另一条边的延长线组成角。多边形的外角和为360度,外角越多,越接近圆。
三角形外角和是多少度?
三角形的外角和是360度。三角形的一条边与另一条边的延长线组成的角,叫做三角形的外角。外角的个数等于多边形边数的两倍。三角形外角和是360°(多边形的外角和一般是每个顶点只取一个外角计算而得)。多边形都会有内角,与之对应的是外角,即将其中一条边延长后,延长线与另一条边成的夹角,称为外角。多边形外角的总和叫做外角和。任意多边形的外角和都为360°,与边数无关。扩展资料:n边形的内角与外角的总和为n×180°,n边形的内角和为(n-2)×180°。说明:(1)多边形的内角和仅与边数有关,与多边形的大小、形状无关;(2)强调凸多边形的内角a的范围:0°<α<180°。n边形的内角和为(n-2)×180°证明如下:在n边形的任意一边上任取一点P,连结P点与其不相邻的其它各顶点的线段可以把n边形分成(n-1)个三角形,这(n-1)个三角形的内角和等于(n-1)·180°(n为边数)。以P为公共顶点的(n-1)个角的和是180°所以n边形的内角和是(n-1)·180°-180°=(n-2)·180°.(n为边数)。参考资料:百度百科-三角形外角
三角形的外角和是多少度
三角形外角和是360度。多边形的外角和一般是每个顶点只取一个外角计算而得。 三角形的一条边与另一条边的反向延长线组成的角,叫做三角形的外角。外角的个数等于多边形边数的两倍。 三角形有6个外角,四边形有8个外角。三角形的一个外角等于与它不相邻的两个内角的和。三角形的一个外角大于与它不相邻的任一内角。三角形的一个外角等于不相邻的两个内角和。三角形的三个内角和为180度。三角形内角和定理为多边形的外角和都等于360度。在三角形中,已知其中两个角的度数,根据三角形内角和定理,则能求出第三个角的度数。
三角形的外角和是多少度?
360度,因三角形每个角与其外角都为180度,3个角与3个外角的总和为3X180=540度,减去内角和180,即为360
三角形外角和公式是什么
三角形外角和公式:在△ABC中,∠1+∠2+∠3=180°。三角形内角和定理:三角形的内角和等于180°。也可以用全称命题表示为:u2200△ABC,∠1+∠2+∠3=180°。任意n边形的内角和公式为θ=180°·(n-2)。其中,θ是n边形内角和,n是该多边形的边数。从多边形的一个顶点连其他的顶点可以将此多边形分成(n-2)个三角形,每个三角形内角和为180°。
三角形外角 和定理
三角形外角定理三角形的任意一个外角等于和它不相邻的两个内角之和。三角形是由同一平面内不在同一直线上的三条线段‘首尾"顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。按角分判定法一:1、锐角三角形:三角形的三个内角都小于90度。2、直角三角形:三角形的三个内角中一个角等于90度,可记作Rt△。3、钝角三角形:三角形的三个内角中有一个角大于90度。判定法二:1、锐角三角形:三角形的三个内角中最大角小于90度。2、直角三角形:三角形的三个内角中最大角等于90度。3、钝角三角形:三角形的三个内角中最大角大于90度,小于180度。其中锐角三角形和钝角三角形统称为斜三角形。
三角形的外角和为什么等于360°
三角形的一个内角+它的外角=180°三角形的三个内角之和+它们的外角和=180X3=540°所以三角形的外角和=540° - 三角形的三个内角之和=540°-180°=360°
三角形的外角和定理是什么 三角形的外角和定理
1、三角形外角的定理是三角形内角和定理一个推论。因为三个角的和是180度,而一个内角和它相邻的外角组成了平角,所以这个内角和这个外角的和也是180度,所以这个外角等于不相邻的两个内角之和。 2、而两个内角必定都大于0度,所以这个外角也一定大于任何一个与它不相邻的内角。这就是三角形的外角定理。
三角形外角和怎么计算
1用翻折法,就是七下数学书上第6页介绍的那种(把一个三角形向里折成一个矩形,三个角在一起) 2从一个顶点做对边的平行线,用内错角相等来证 3任意做一个四边形,连接对角线,分成两个三角形,再用四边形内角和360来证 4将任意一个三角形做高分成两个直角三角形,再利用斜中线定理来证 5延长一边,用一个角的外角等于其不相邻的两个内角和 6画这个三角形的外接圆,用圆周角的度数等于其所对的弧的度数的一半来证 7画这个三角形的内切圆,连接圆心和三角形的顶点,可得到三个三角形的内角和等于一个三角形的内角和+360° 8过三角形内一点做三边的平行线,在用内错角相等、同位角相等、对顶角相等把三个顶角弄在一条直线上 9也可过边上一点做其余两边的平行线用类似于8的方法来证 10延长三边(若三角形ABC只需延长ab bc ca 不需要延长ba cb ac)有三条直线则为520°又因为外角和360°所以内角和180°
三角形的内角和与外角和是多少度?
三角形外角和内角的关系如下:一个三角形包含三个内角和三个相应的外角,总体而言,三角形内角和与外角和的总和是180度。具体来说,每个三角形内角加上其相邻外角的测量值总是等于180度。首先,我们来看一下什么是三角形内角。三角形内角是指在三角形内部的三个角度,它们的相加总是等于180度。换句话说,无论三角形的大小或形状如何,其内角和总是恒定为180度。例如,一个等边三角形的三个内角都是相等的60度,使得总和为180度。同样地,一个直角三角形的两个内角分别是90度和45度,第三个角是剩余的45度,三个角度的总和也是180度。其次,我们来看一下三角形的外角。一个三角形的外角是指位于该三角形一个角顶点之外并且不与该三角形的其他两个角相邻的角度。正如前面所提到的,如果把这个外角与相邻的三角形内角相加,结果总是180度。因此,一个三角形的三个外角的总和也应该是180度。这可以通过以下公式表示:外角和=360度-内角和。其中,内角和是三角形所有内角的总和,外角和是三角形所有外角的总和。最后,我们还可以从三角形外角和和内角和的关系中推导出一些性质。例如,一个三角形的一个内角和相应的外角之和总是180度,这意味着两个角度之和总是定值,如果其中一个增加,那么另一个就会减少。此外,如果一个三角形的一个内角非常小,那么它对应的外角就是非常大的。另外,任何一个凸多边形的所有外角和等于360度,这意味着三角形的外角和与其它凸多边形的外角和有相关的关系。综上所述,三角形的内角和与外角和的关系是一个重要的几何学基础概念,具有许多实际应用场景,如建筑设计、测绘工程等。对于解决三角形内角和外角和问题和相关的数学应用问题,需要充分理解它们之间的关系和性质。
三角形外角和为360度怎么证明要4种
1。因为三角形的外角等于与他不相邻的两个内角和,所以3个外角的和=2*三角形内角和=2*180度=360度。2、用三角形的性质证明三角形的内外角总合是540三角形内角和是180所以三角形的外角和是360度。3、延长它的每一条边,假如这个三角形为等边三角形,可得,每一个外角等于180-60=120,120*3=3604、设三角形ABC,延长BA到E,延长CB到F,延长AC到G 即证明∠EAC+∠FBA+GCB=360由于∠FBA=∠BAC+∠BCA,所以∠EAC+∠FBA+∠GCB=∠BAC+∠BCA+∠EAC+∠GCB 因为∠BAC+∠EAC=180,∠BCA+∠GCB=180,所以∠BAC+∠BCA+∠EAC+∠GCB=180+180=360即∠EAC+∠FBA+∠GCB=360,即三角形的外角和等于360度。扩展资料:三角形外角定理三角形的任意一个外角等于和它不相邻的两个内角之和。如图,△ABC的一个外角∠CBE=∠A+∠C。这个定理的证明,如图所示,利用平行线的性质证明;也可以直接用三角形内角和定理证。由三角形外角定理不难推出:三角形任意一个外角,大于和它不相邻的任意一个内角。如图,∠CBE>∠A,∠CBE>∠C。
三角形外接圆性质
三角形外接圆性质如下:三角形外接圆的圆心是三角形外心,外心到三角形三个顶点的距离相等;三角形外接圆的半径是三角形外心到任意一个顶点的距离。1.三角形外接圆的圆心是三角形外心,外心到三角形三个顶点的距离相等。2.三角形外接圆的半径是三角形外心到任意一个顶点的距离。3.三角形内心、垂心、重心和外心四个点共圆,即在三角形外接圆上。4.三角形外接圆的直径是三角形边上中垂线的交点,也就是三角形外心到任意两个顶点的连线。5.如果一个三角形的内角是锐角或直角,那么它的外心在三角形内部;如果一个三角形的内角是钝角,那么它的外心在三角形外部。这些性质可以帮助我们更好地理解和计算三角形的各种相关参数,如周长、面积等。三角形外接圆有以下7个知识点:1.三角形外接圆的圆心是三角形的外心,外心是三角形三条边的垂直平分线的交点。2.三角形外接圆的半径等于三角形三边的中线之积除以四倍三角形面积。3.三角形外接圆的直径是三角形任意一条边的对边上的高的两倍。4.欧拉线定理:三角形的垂心、重心、外心三点共线,且重心与外心的连线等于垂心与外心的连线的两倍。5.偏角定理:三角形外接圆上的一条弧所对应的圆心角等于这条弧所对应的三角形内角的补角。6.勾股定理:对于直角三角形,其斜边的一半就是外接圆的半径。7.海龙公式:三角形面积等于外接圆半径与三边长度之积的一半。
三角形外接圆怎么画 图解
几何画板的功能比较强大,可以取代数学中的三角尺和圆规。利用三角尺和圆规可以作出很多图形,以三角形的外接圆为例,下面介绍几何画板三角形外接圆的绘制方法:1、选择“线段直尺工具”,做出三角形ABC。2、依次选择线段AB、线段BC,执行“构造”—“中点”命令,在线段AB和线段BC分别出现中点D、E。3、选择线段AB和点D,执行“构造”—“垂线”命令,做出线段AB的垂直平分线。相同的方法构造线段BC过点E的垂线。两条垂直平分线的交点为“O”。4、选择“圆工具”,选择点O,按住鼠标拖动至点A、B、C任一点处,然后松开鼠标即可。将两条垂线隐藏。扩展资料三角形有外接圆,其他的图形不一定有外接圆。 三角形的外接圆圆心是任意两边的垂直平分线的交点。 三角形外接圆圆心叫外心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)也可能在三角形边上(如直角三角形)。锐角三角形外心在三角形内部。直角三角形外心在三角形斜边中点。钝角三角形外心在三角形外。
三角形的外接圆公式是什么
三角形的外接圆公式是a/sinA=b/sinB=c/sinC=2R,与多边形各顶点都相交的圆叫做多边形的外接圆,三角形有外接圆,其他的图形不一定有外接圆。 三角形的外接圆圆心是任意两边的垂直平分线的交点。三角形外接圆圆心叫外心。在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部,也可能在三角形边上。
三角形的外接圆怎么画,图解
1、选择“线段直尺工具”,做出三角形ABC,具体如图所示。2、依次选择线段AB、线段BC,画出这两条边的中点D、E,具体如图所示。3、做线段AB、线段BC的垂直平分线,相交于O点,连接OE和DE,具体如图所示。4、以OB作为圆的半径,画出三角形的外接圆,具体如图所示。5、擦去多余的线段,三角形的外接圆,具体如图所示。
三角形外接圆的公式是什么?
三角形外接圆的公式是:2R=a*b/(b-c)。一、三角形和外接圆的基本性质与公式推导这个公式的基础是三角形的一些基本性质。三角形有外接圆,这个圆的直径等于三角形的最长边(我们假设是a),而它的半径等于三角形中最长的边的一半(即a/2)。在三角形中,另外两条边的长度(假设是b和c)与最长边a的关系可以通过三角形的面积公式S=1/2absin(C)来描述,其中C是三角形的角度。通过这个公式,可以得到b和c之间的关系:b^2+c^2=a^2+2bcsin(C)。将外接圆的半径和b^2+c^2的关系带入这个公式,可以得到:R=(1/2)*a=(1/2)sqrt(b^2+c^2+2bcsin(C))然后,可以化简这个公式,得到:R=(1/2)*sqrt(b^2+c^2+bc)/(1-sin(C))这就是三角形外接圆的半径公式。二、外接圆半径的单位在使用三角形外接圆公式时,必须注意单位的一致性。通常,三角形的三边长度是以长度单位为基准的,而外接圆半径的单位与三边长度的单位是一致的。如果三边长度的单位不同,那么在计算外接圆半径时也会存在相应的换算问题。三角形与外接圆的性质、关系和画法1、性质外接圆的圆心是三角形的三个顶点连线的中点。通过这个性质,可以利用这个公式求解出任意一个已知三角形的外接圆半径。2、关系三角形是一个平面图形,而圆则是一种特殊的曲线。当一个圆与一个三角形相切时,它的圆心会位于三角形的一个顶点上,并且该圆的半径等于外接圆的半径。3、画法已知三角形的三边长度后,可以根据这个公式计算出外接圆的半径,然后根据圆心和半径画出外接圆。
三角形的外接圆心是什么意思?
三角形外接圆的圆心叫做这个三角形的外心,这个三角形叫做这个圆的内接三角形,外心是三角形各边中垂线的交点;直角三角形外接圆半径等于斜边的一半。与三角形各边都相切的圆叫做三角形的内切圆。三角形的内切圆的圆心叫做三角形的内心,这个三角形叫做圆外切三角形,三角形的内心就是三角形三条内角平分线的交点。直角三角形内切圆半径 等于斜边的一半。经过半径的外端且垂直与这条半径的直线是圆的切线。圆的切线垂直于经过切点的半径;经过圆心且垂直于切线的直线必经过切点;经过切点切垂直于切线的直线必经过圆心。
三角形的外接圆的半径有几种表示方法?
三角形外接圆半径公式:abc/4R。三角形的面积记作△,三边长分别是a、b、c,外接圆半径为R,那么△=abc/4R; R=abc/4△,因为△=(1/2)ah=(1/2)absinC=(1/2)ab·c/(2R)=abc/4R。经过三角形各顶点的圆叫做三角形的外接圆,表示三角形外接圆半径的方法有:1、用三角形的边和角来表示它的外接圆的半径。2、用三角形的三边来表示它的外接圆的半径。3、用三角形的三边和面积表示外接圆半径的公式等。外接圆性质:1、锐角三角形外心在三角形内部。2、直角三角形外心在三角形斜边中点。3、钝角三角形外心在三角形外。4、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心,在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)也可能在三角形边上(如直角三角形)。
任意三角形外接圆圆心公式
任意三角形外接圆圆心公式:p=(a+b+c)/2。与多边形各顶点都相交的圆叫做多边形的外接圆。三角形有外接圆,其他的图形不一定有外接圆。三角形的外接圆圆心是任意两边的垂直平分线的交点。三角形外接圆圆心叫外心。三角形是由同一平面内不在同一直线上的三条线段首尾顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形)。
任意三角形外接圆半径是什么?
任意三角形外接圆半径如下:a/sinA=b/sinB=b/sinC=2R。直角三角形外接圆半径=二分之一×斜边。外接圆半径是三角形三条边的垂直平分线的交点到三个顶点的距离。外接圆半径是三角形三条边的垂直平分线的交点到三个顶点的距离,与多边形各顶点都相交的圆叫做多边形的外接圆。三角形的外接圆的性质:外接圆的圆心到三角形的三个顶点的距离相等。锐角三角形外心在三角形内部。直角三角形外心在三角形斜边中点上。钝角三角形外心在三角形外。与多边形各顶点都相交的圆叫做多边形的外接圆。三角形有外接圆,其他的图形不一定有外接圆。三角形的外接圆圆心是任意两边的垂直平分线的交点。三角形外接圆圆心叫外心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)也可能在三角形边上(如直角三角形)。
三角形外接圆的性质
1.三角形外接圆的圆心是三角形外心,外心到三角形三个顶点的距离相等。2.三角形外接圆的半径是三角形外心到任意一个顶点的距离。3.三角形内心、垂心、重心和外心四个点共圆,即在三角形外接圆上。4.三角形外接圆的直径是三角形边上中垂线的交点,也就是三角形外心到任意两个顶点的连线。5.如果一个三角形的内角是锐角或直角,那么它的外心在三角形内部;如果一个三角形的内角是钝角,那么它的外心在三角形外部。这些性质可以帮助我们更好地理解和计算三角形的各种相关参数,如周长、面积等。三角形外接圆有以下7个知识点:1. 三角形外接圆的圆心是三角形的外心,外心是三角形三条边的垂直平分线的交点。2. 三角形外接圆的半径等于三角形三边的中线之积除以四倍三角形面积。3. 三角形外接圆的直径是三角形任意一条边的对边上的高的两倍。4. 欧拉线定理:三角形的垂心、重心、外心三点共线,且重心与外心的连线等于垂心与外心的连线的两倍。5. 偏角定理:三角形外接圆上的一条弧所对应的圆心角等于这条弧所对应的三角形内角的补角。6. 勾股定理:对于直角三角形,其斜边的一半就是外接圆的半径。7. 海龙公式:三角形面积等于外接圆半径与三边长度之积的一半。
三角形的外接圆的定义
三角形的外接圆是指经过三角形三个顶点的圆。与多边形各顶点都相交的圆叫做多边形的外接圆。三角形有外接圆,其他的图形不一定有外接圆。 三角形的外接圆圆心是任意两边的垂直平分线的交点。 三角形外接圆圆心叫外心。即做三角形三条边的垂直平分线(两条也可,两线相交确定一点)。以线段为例,可以看作是三角形一边。分别以两个端点为圆心适当长度(相等)为半径做圆(只画出与线段相交的弧即可),再分别以两交点为圆心,等长为半径(保证两圆相交)做圆,过最后的两个圆的两个交点做直线,这条直线垂直且平分这条线段即线段的垂直平分线。性质1、锐角三角形外心在三角形内部。2、直角三角形外心在三角形斜边中点。3、钝角三角形外心在三角形外。4、有外心的图形,一定有外接圆(各边中垂线的交点,叫做外心)。5、外接圆圆心到三角形各个顶点的线段长度相等。6、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)也可能在三角形边上(如直角三角形)。7、过不在同一直线上的三点可作一个圆(且只有一个圆)。
三角形外接圆半径怎么求
1、用三角形的边和角来表示它的外接圆的半径设在三角形ABC中,已知一边和它的对角,那么用已知边和角来表示它的外接圆的半径R的公式是很明显,这几个公式可以从正弦定理的推论导出。2、用三角形的三边来表示它的外接圆的半径设在三角形ABC中,已知三边abc,那么,用已知边表示三角形的外接圆半径R的公式为:其中p=(a+b+c)/2。扩展资料:外接圆的性质:锐角三角形外心在三角形内部。直角三角形外心在三角形斜边中点。钝角三角形外心在三角形外。有外心的图形,一定有外接圆(各边中垂线的交点,叫做外心)外接圆圆心到三角形各个顶点的线段长度相等过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)也可能在三角形边上(如直角三角形)。过不在同一直线上的三点可作一个圆(且只有一个圆)。参考资料来源:百度百科-外接圆半径公式。
三角形外接圆面积公式是什么?
根据正弦定理,a/sinA=b/sinB=c/sinC=2R,其中R是外接圆半径。外接圆面积=πR^2。设两边为a,b其夹角为A。外接圆半径R=a/sinA=b/sinB=c/sinC=2R。面积=πR方。外接圆的性质:锐角三角形的中心在三角形的内部。直角三角形的外中心在其斜边的中点。钝角三角形的外中心在三角形之外。具有外中心的图形必须有一个外圆(每侧垂直线的交点,称为外中心)。外接圆中心到三角形各顶点的线段长度相等。通过三角形三个顶点的圆称为三角形的外接圆,其中心称为三角形的外中心。在三角形中,三角形的外中心可能不在三角形的内部,但可能在三角形的外部(如钝角三角形)或三角形的侧面(如直角三角形)。一个圆(并且只有一个圆)可以通过三个不在同一条线上的点来形成。
请问三角形的外接圆有什么性质
三角形的外接圆的性质:外接圆的圆心到三角形的三个顶点的距离相等。 1、锐角三角形外心在三角形内部。 2、直角三角形外心在三角形斜边中点上。 3、钝角三角形外心在三角形外。 更多关于三角形的外接圆有什么性质,进入:https://m.abcgonglue.com/ask/0771671615756181.html?zd查看更多内容
三角形外接圆的做法
1、分别作三角形的两条边的垂直平分线交于一点;2、以此点为圆心,此点到任一顶点的长度为半径作圆。则此圆就是要作的三角形的外接圆。
怎样求三角形外接圆半径呢?
三角形外接圆半径公式:abc/4R。三角形的面积记作△,三边长分别是a、b、c,外接圆半径为R,那么△=abc/4R; R=abc/4△,因为△=(1/2)ah=(1/2)absinC=(1/2)ab·c/(2R)=abc/4R。经过三角形各顶点的圆叫做三角形的外接圆,表示三角形外接圆半径的方法有:1、用三角形的边和角来表示它的外接圆的半径。2、用三角形的三边来表示它的外接圆的半径。3、用三角形的三边和面积表示外接圆半径的公式等。外接圆性质:1、锐角三角形外心在三角形内部。2、直角三角形外心在三角形斜边中点。3、钝角三角形外心在三角形外。4、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心,在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)也可能在三角形边上(如直角三角形)。
等腰三角形外接圆圆心的位置
等腰三角形外接圆圆心的位置:任意两边的垂直平分线的交点。分以下三种情况:1.等腰锐角三角形外接圆圆心在三角形内部。2.等腰直角三角形外接圆圆心在三角形斜边中点。3.等腰钝角三角形外接圆圆心在三角形外。与多边形各顶点都相交的圆叫做多边形的外接圆,三角形的外接圆圆心是任意两边的垂直平分线的交点,三角形外接圆圆心叫外心。有外心的图形,一定有外接圆(各边中垂线的交点,叫做外心),外接圆圆心到三角形各个顶点的线段长度相等。
三角形的外接圆有什么性质?
外接圆有什么性质如下:1、三角形外接圆的圆心是三角形外心,外心到三角形三个顶点的距离相等。2、三角形外接圆的半径是三角形外心到任意一个顶点的距离。3、三角形内心、垂心、重心和外心四个点共圆,即在三角形外接圆上。4、三角形外接圆的直径是三角形边上中垂线的交点,也就是三角形外心到任意两个顶点的连线。5、如果一个三角形的内角是锐角或直角,那么它的外心在三角形内部;如果一个三角形的内角是钝角,那么它的外心在三角形外部。拓展资料:一、三角形外接圆有以下7个知识点:1、三角形外接圆的圆心是三角形的外心,外心是三角形三条边的垂直平分线的交点。2、三角形外接圆的半径等于三角形三边的中线之积除以四倍三角形面积。3、三角形外接圆的直径是三角形任意一条边的对边上的高的两倍。4、欧拉线定理:三角形的垂心、重心、外心三点共线,且重心与外心的连线等于垂心与外心的连线的两倍。5、偏角定理:三角形外接圆上的一条弧所对应的圆心角等于这条弧所对应的三角形内角的补角。6、勾股定理:对于直角三角形,其斜边的一半就是外接圆的半径。7、海龙公式:三角形面积等于外接圆半径与三边长度之积的一半。二、外接圆与多边形各顶点都相交的圆叫做多边形的外接圆。三角形有外接圆,其他的图形不一定有外接圆。三角形的外接圆圆心是任意两边的垂直平分线的交点。三角形外接圆圆心叫外心。三角形有外接圆,其他的图形不一定有外接圆。三角形的外接圆圆心是任意两边的垂直平分线的交点。三角形外接圆圆心叫外心。三角形外接圆半径能部分描述三角形的结构特征,在三角形两条边长及其外接圆半径已知的情况下,可以确定唯一的三角形。
怎么判断三角形的外接圆在哪个顶点?
解答过程:设圆的一般方程为x^2+y^2+Dx+Ey+F=0。由该圆过已知三角形的三个顶点,将三个顶点坐标代入圆的一般方程。得到关于D,E,F的三元一次方程组,解得D,E,F即可。1、与多边形各顶点都相交的圆叫做多边形的外接圆。2、三角形有外接圆,其他的图形不一定有外接圆。 三角形的外接圆圆心是任意两边的垂直平分线的交点。 三角形外接圆圆心叫外心。扩展资料:内接圆的性质:1、在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。2、正多边形必然有内切圆,而且其内切圆的圆心和外接圆的圆心重合,都在正多边形的中心。3、常见辅助线:过圆心作垂直。参考资料来源:百度百科-内切圆参考资料来源:百度百科-外接圆
三角形外接圆面积公式
三角形外接圆面积公式:S=absinC/2,三角形是由同一平面内不在同一直线上的三条线段‘首尾"顺次连接所组成的封闭图形,在数学、建筑学有应用。常见的三角形按边分有普通三角形(三条边都不相等),等腰三角(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形),按角分有直角三角形、锐角三角形、钝角三角形等,其中锐角三角形和钝角三角形统称斜三角形。
三角形外接圆圆心怎么求
锐角三角形外心在三角形内部。直角三角形外心在三角形斜边中点。钝角三角形外心在三角形外。外接圆性质有外心的图形,一定有外接圆(各边中垂线的交点,叫做外心)外接圆圆心到三角形各个顶点的线段长度相等过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)也可能在三角形边上(如直角三角形)。过不在同一直线上的三点可作一个圆(且只有一个圆)。直角三角形外接圆半径=二分之一×斜边作图方法即做三角形三条边的垂直平分线(两条也可,两线相交确定一点)以线段为例,可以看作是三角形一边。分别以两个端点为圆心适当长度(相等)为半径做圆(只画出与线段相交的弧即可),再分别以两交点为圆心,等长为半径(保证两圆相交)做圆,过最后的两个圆的两个交点做直线,这条直线垂直且平分这条线段即线段的垂直平分线。 以上是小编为大家分享的关于三角形外接圆圆心怎么求的相关内容,更多信息可以关注建筑界分享更多干货
“三角形的外接圆与内接圆”是什么意思?
三角形的外接圆:圆与三角形的三个顶点相交。圆心是三条边的中垂线交点。如下图:内切圆(注意叫内切哦):圆与三角形的三条边相交。圆心是三个内角的角平分线交点。如下图:一、三角形外接圆定义与三角形三个顶点都相交的圆叫做三角形的外接圆。三角形的外接圆圆心是任意两边的垂直平分线的交点。 三角形外接圆圆心叫外心。二、三角形的内切圆定义与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形三条角平分线的交点。概念三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆。),且内切圆圆心定在三角形内部。在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。
三角形外接圆半径公式推导过程是什么?
三角形外接圆半径公式推导:三角形的面积记作△,三边长分别是a、b、c,外接圆半径为R,那么△=abc/4R;R=abc/4△。因为△=(1/2)ah=(1/2)absinC=(1/2)ab·c/(2R)=abc/4R。直角三角形的外心(即三边垂直平分线交点)在斜边的中点上,因此直角三角形的外接圆半径就等于斜边的一半。外接圆的性质:锐角三角形的中心在三角形的内部。直角三角形的外中心在其斜边的中点。钝角三角形的外中心在三角形之外。具有外中心的图形必须有一个外圆(每侧垂直线的交点,称为外中心)外接圆中心到三角形各顶点的线段长度相等通过三角形三个顶点的圆称为三角形的外接圆,其中心称为三角形的外中心。在三角形中,三角形的外中心可能不在三角形的内部,但可能在三角形的外部(如钝角三角形)或三角形的侧面(如直角三角形)。一个圆(并且只有一个圆)可以通过三个不在同一条线上的点来形成。
三角形的外接圆与内接圆定理
1、三角形的外接圆定理:(1)三角形各边垂直平分线的交点,是外心。(2)外心到三角形各顶点的距离相等。(3)外心到三角形各边的垂线平分各边。2、三角形的内切圆定理:(1)三角形各内角平分线的交点,是内心。(2)内心到三角形各边的距离相等。(3)三角形任一顶点到内切圆的两切线长相等。(4)三角形顶点到内切圆的切线长,是这点到圆心的距离与它圆外部分的比例中项。扩展资料:外接圆的相关性质:1、锐角三角形外心在三角形内部。2、直角三角形外心在三角形斜边中点。3、钝角三角形外心在三角形外。4、有外心的图形,一定有外接圆(各边中垂线的交点,叫做外心)5、外接圆圆心到三角形各个顶点的线段长度相等6、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)也可能在三角形边上(如直角三角形)。7、过不在同一直线上的三点可作一个圆(且只有一个圆)。参考资料来源:百度百科 - 外接圆参考资料来源:百度百科 - 内切圆
三角形的外接圆有什么性质
三角形的外接圆的性质:外接圆的圆心到三角形的三个顶点的距离相等。1、锐角三角形外心在三角形内部。2、直角三角形外心在三角形斜边中点上。3、钝角三角形外心在三角形外。更多关于三角形的外接圆有什么性质,进入:https://m.abcgonglue.com/ask/0771671615756181.html?zd查看更多内容
CAD中如何画三角形的外接圆?
CAD中如何画三角形的外接圆 CAD中画三角形的外接圆,简单步骤如下: 1、 有如图所示的三角形。2、 作三角形的两条边的中垂线。3、 输入画圆命令“c”,回车。4、 指定角平分线的交点为圆心。5、 指定交点到端点的距离为半径。6、 三角形的外接圆完成。
已知三角形三点坐标,怎么求其外接圆的方程
已知三角形三点坐标,求其外接圆的方程的方法:1、设圆的一般方程为x^2+y^2+Dx+Ey+F=0。由该圆过已知三角形的三个顶点,将三个顶点坐标代入圆的一般方程。得到关于D,E,F的三元一次方程组,解得D,E,F即可。2、三角形任意两边的垂直平分线,两个垂直平分线的交点就是三角形外接圆的圆心。而后再确定半径,可以圆心与三角形的任一顶点距离就是半径。扩展资料:外接圆半径是三角形三条边的垂直平分线的交点到三个顶点的距离。外接圆半径R:直角三角形外接圆半径=二分之一×斜边。三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆。),且内切圆圆心定在三角形内部。在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。三角形有外接圆,其他的图形不一定有外接圆。 三角形的外接圆圆心是任意两边的垂直平分线的交点。 三角形外接圆圆心叫外心。
三角形的外接圆有什么性质?
三角形的外接圆的性质:外接圆的圆心到三角形的三个顶点的距离相等。锐角三角形外心在三角形内部。直角三角形外心在三角形斜边中点上。钝角三角形外心在三角形外。拓展资料:有外心的图形,一定有外接圆(各边中垂线的交点,叫做外心)。外接圆圆心到三角形各个顶点的线段长度相等。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)。过不在同一直线上的三点可作一个圆(且只有一个圆)。
三角形外接圆半径公式是什么?
三角形外接圆半径公式如下:与多边形各顶点都相交的圆叫做多边形的外接圆。三角形有外接圆,其他的图形不一定有外接圆。 三角形的外接圆圆心是任意两边的垂直平分线的交点。 三角形外接圆圆心叫外心。外接圆的性质1、锐角三角形外心在三角形内部。2、直角三角形外心在三角形斜边中点。3、钝角三角形外心在三角形外。作图方法1、即做三角形三条边的垂直平分线。(两条也可,两线相交确定一点)2、以线段为例,可以看作是三角形一边。分别以两个端点为圆心适当长度(相等)为半径做圆(只画出与线段相交的弧即可),再分别以两交点为圆心,等长为半径(保证两圆相交)做圆,过最后的两个圆的两个交点做直线,这条直线垂直且平分这条线段即线段的垂直平分线。
三角形的内接圆半径和外接圆半径的关系?
设外接圆半径为R,内接圆半径为r,三边长分别为abc三角形外接圆半径、内接圆半径与三边边长的关系可表示为: R×r=(abc/4S)×[2S/(a+b+c)]=abc/2(a+b+c)说明:外接圆半径是指三角形三条边的垂直平分线(中垂线)的交点到三个顶点的距离;内接圆半径是指三角形三条边上的高线的交点到三条边的距离。
三角形的重心,外心,内心,外接圆圆心,内切圆圆心分别是什么?
比较内心与外心,就要抓住定义。 内心是与内切圆的圆心,也就是说圆与三边都相切,若连接圆心与切点,则有圆心到三边距离相等,也就是说内心是角平分线的交点。 外心是外接圆的圆心,也就是说三角形的三个顶点在外接圆上,所以圆心到三个顶点的距离相等。所以是各边垂直平分线的交点 其余性质都可以从这挖掘出来 所谓三角形的"四心",是指三角形的四种重要线段相交而成的四类特殊点.它们分别是三角形的内心,外心,垂心与重心. 1.垂心 三角形三条边上的高相交于一点,这一点叫做三角形的垂心. 2.重心 三角形三条边上的中线交于一点,这一点叫做三角形的重心. 3. 三角形三边的中垂线交于一点,这一点为三角形外接圆的圆心,称外心 4. 三角形三内角平分线交于一点,这一点为三角形内切圆的圆心,称内心, 重心 三边上中线的交点 垂心 三条高的交点 内心 内接圆圆心 三个角角平分线交点 外心 外接圆圆心 三条边的垂直平分线交点 三角形三条边的垂直平分线的交点!! 锐角三角形的外心在三角形内; 直角三角形的外心是斜边的中点; 钝角三角形的外心在三角形外!!
任意三角形中:三角形的外接圆直径和内接圆直径有什么关系?
外接圆半径是三角形三条边的垂直平分线的交点到三个顶点的距离 内接圆半径是三角形三条边的垂线的交点到三角边的距离. 外接圆半径: 公式: a/sinA=b/sinB=c/sinC=2R (R就是外接圆半径) 本题可以这样: ①.先利用余弦定理:a^2=b^2+c^2-2bc·cosA 求出:cosA=(b^2+c^2-a^2)/2bc 在利用公式:sinA^2+cosA^2=1确定 sinA=根号(1-cosA^2) =根号[(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)]/(2bc) 然后代入 a/sinA=2R求出R. R=2abc/根号[(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)] 内接圆半径: r=2S/(a+b+c),其中S是三角形面积,a、b、c是三角形三边.另外S=根号下p(p-a)(p-b)(p-c),其中p=(a+b+c)/2 太累了,这么复杂,楼主不给点分
三角形的外接圆有什么性质?
外接圆有什么性质如下:1、三角形外接圆的圆心是三角形外心,外心到三角形三个顶点的距离相等。2、三角形外接圆的半径是三角形外心到任意一个顶点的距离。3、三角形内心、垂心、重心和外心四个点共圆,即在三角形外接圆上。4、三角形外接圆的直径是三角形边上中垂线的交点,也就是三角形外心到任意两个顶点的连线。5、如果一个三角形的内角是锐角或直角,那么它的外心在三角形内部;如果一个三角形的内角是钝角,那么它的外心在三角形外部。拓展资料:一、三角形外接圆有以下7个知识点:1、三角形外接圆的圆心是三角形的外心,外心是三角形三条边的垂直平分线的交点。2、三角形外接圆的半径等于三角形三边的中线之积除以四倍三角形面积。3、三角形外接圆的直径是三角形任意一条边的对边上的高的两倍。4、欧拉线定理:三角形的垂心、重心、外心三点共线,且重心与外心的连线等于垂心与外心的连线的两倍。5、偏角定理:三角形外接圆上的一条弧所对应的圆心角等于这条弧所对应的三角形内角的补角。6、勾股定理:对于直角三角形,其斜边的一半就是外接圆的半径。7、海龙公式:三角形面积等于外接圆半径与三边长度之积的一半。二、外接圆与多边形各顶点都相交的圆叫做多边形的外接圆。三角形有外接圆,其他的图形不一定有外接圆。三角形的外接圆圆心是任意两边的垂直平分线的交点。三角形外接圆圆心叫外心。三角形有外接圆,其他的图形不一定有外接圆。三角形的外接圆圆心是任意两边的垂直平分线的交点。三角形外接圆圆心叫外心。三角形外接圆半径能部分描述三角形的结构特征,在三角形两条边长及其外接圆半径已知的情况下,可以确定唯一的三角形。
如何求三角形的外接圆半径?
三角形外接圆半径公式推导:三角形的面积记作△,三边长分别是a、b、c,外接圆半径为R,那么△=abc/4R;R=abc/4△。因为△=(1/2)ah=(1/2)absinC=(1/2)ab·c/(2R)=abc/4R。直角三角形的外心(即三边垂直平分线交点)在斜边的中点上,因此直角三角形的外接圆半径就等于斜边的一半。外接圆的性质:锐角三角形的中心在三角形的内部。直角三角形的外中心在其斜边的中点。钝角三角形的外中心在三角形之外。具有外中心的图形必须有一个外圆(每侧垂直线的交点,称为外中心)外接圆中心到三角形各顶点的线段长度相等通过三角形三个顶点的圆称为三角形的外接圆,其中心称为三角形的外中心。在三角形中,三角形的外中心可能不在三角形的内部,但可能在三角形的外部(如钝角三角形)或三角形的侧面(如直角三角形)。一个圆(并且只有一个圆)可以通过三个不在同一条线上的点来形成。
三角形外接圆半径是什么?
三角形外接圆半径公式:abc/4R。三角形的面积记作△,三边长分别是a、b、c,外接圆半径为R,那么△=abc/4R; R=abc/4△,因为△=(1/2)ah=(1/2)absinC=(1/2)ab·c/(2R)=abc/4R。经过三角形各顶点的圆叫做三角形的外接圆,表示三角形外接圆半径的方法有:1、用三角形的边和角来表示它的外接圆的半径。2、用三角形的三边来表示它的外接圆的半径。3、用三角形的三边和面积表示外接圆半径的公式等。外接圆的性质:锐角三角形外心在三角形内部。直角三角形外心在三角形斜边中点。钝角三角形外心在三角形外。有外心的图形,一定有外接圆(各边中垂线的交点,叫做外心)。外接圆圆心到三角形各个顶点的线段长度相等。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)也可能在三角形边上(如直角三角形)。过不在同一直线上的三点可作一个圆(且只有一个圆)。
三角形内切圆和外接圆怎样区分?
三角形的外接圆:圆与三角形的三个顶点相交。圆心是三条边的中垂线交点。如下图:内切圆(注意叫内切哦):圆与三角形的三条边相交。圆心是三个内角的角平分线交点。如下图:一、三角形外接圆定义与三角形三个顶点都相交的圆叫做三角形的外接圆。三角形的外接圆圆心是任意两边的垂直平分线的交点。 三角形外接圆圆心叫外心。二、三角形的内切圆定义与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形三条角平分线的交点。概念三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆。),且内切圆圆心定在三角形内部。在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。
三角形的外接圆方程怎么求
已知三顶点坐标,求外接圆方程,可用待定系数法。设方程为 x^2 + y^2 + Dx + Ey + F = 0 ,然后将坐标依次代入,得到三个方程,解出 D 、E 、F ,就可直接写出外接圆的方程。
等腰三角形外接圆半径公式
公式:r=2h/3=2*(√3a/2)/3=√3a/3。经过三角形各顶点的圆叫做三角形的外接圆,表示三角形外接圆半径的方法有:1.用三角形的边和角来表示它的外接圆的半径;2.用三角形的三边来表示它的外接圆的半径;3.用三角形的三边和面积表示外接圆半径的公式等。等腰三角形是指至少有两边相等的三角形,相等的两个边称为这个三角形的腰。等腰三角形中,相等的两条边称为这个三角形的腰,另一边叫做底边。两腰的夹角叫做顶角,腰和底边的夹角叫做底角。等腰三角形的两个底角度数相等。常见的三角形按边分有普通三角形(三条边都不相等)、等腰三角形(腰与底不等的等腰三角形、腰与底相等的等腰三角形即等边三角形);按角分有直角三角形、锐角三角形、钝角三角形等。大于0°而小于90°的角叫锐角,大于90°小于180°的角叫做钝角,等于90°的角叫做直角。
如何做三角形的外接圆(尺规作图)
以三角形ABC为例:1、作线段AB的垂直平分线L。2、作线段BC的垂直平分线与直线L交于O。3、以点O为圆心,以OA的长为半径作圆即可。做其中两条边条边的垂直平分线,以此交点为圆心。分别以线段两端为圆心,以大于线段1/2为半径在线段两侧作弧,连两相交点,此线就是该线段的垂直平分线。依据就是:线段的垂直平分线上任意一点,到线段两端的距离相等。扩展资料:即做三角形三条边的垂直平分线(两条也可,两线相交确定一点)以线段为例,可以看作是三角形一边。分别以两个端点为圆心适当长度(相等)为半径做圆(只画出与线段相交的弧即可),再分别以两交点为圆心,等长为半径(保证两圆相交)做圆,过最后的两个圆的两个交点做直线,这条直线垂直且平分这条线段即线段的垂直平分线。参考资料来源:百度百科-外接圆
三角形的外接圆有什么性质
这个圆性质是到三角形的三个顶点距离相等。三角形的外接圆就是,三角形三边的垂直平分线的交点是这个外接圆的圆心,这个圆就叫做三角形的外接圆,它的性质就是圆心,叫外心,到三角形的三个顶点距离相等。锐角三角形的外心在三角形内部,直角三角形外心在三角形斜边中点钝角三角形外心在三角形外,三角形外接圆圆心(外心)是任意两边的垂直平分线的交点。
三角形外接圆性质
是外接圆圆心到三角形,各个顶点的线段长度相等。外接圆半径是三角形,三条边的垂直平分线的交点,到三个顶点的距离。三角形有外接圆,其他的图形不一定有外接圆。三角形的外接圆圆心,是任意两边的垂直平分线的交点。三角形外接圆圆心叫外心。与多边形各顶点都相交的,圆叫做多边形的外接圆。
三角形的外接圆怎么做
几何画板的功能比较强大,可以取代数学中的三角尺和圆规。利用三角尺和圆规可以作出很多图形,以三角形的外接圆为例,下面介绍几何画板三角形外接圆的绘制方法:1、选择“线段直尺工具”,做出三角形ABC。2、依次选择线段AB、线段BC,执行“构造”—“中点”命令,在线段AB和线段BC分别出现中点D、E。3、选择线段AB和点D,执行“构造”—“垂线”命令,做出线段AB的垂直平分线。相同的方法构造线段BC过点E的垂线。两条垂直平分线的交点为“O”。4、选择“圆工具”,选择点O,按住鼠标拖动至点A、B、C任一点处,然后松开鼠标即可。将两条垂线隐藏。扩展资料三角形有外接圆,其他的图形不一定有外接圆。 三角形的外接圆圆心是任意两边的垂直平分线的交点。 三角形外接圆圆心叫外心。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)也可能在三角形边上(如直角三角形)。锐角三角形外心在三角形内部。直角三角形外心在三角形斜边中点。钝角三角形外心在三角形外。
三角形外接圆的半径公式是什么?
三角形外接圆是指过三角形三个顶点的圆,这个圆的半径被称为三角形外接圆的半径。在数学中,我们可以通过一些计算公式来求解三角形外接圆的半径。首先,我们需要知道三角形的三条边长,分别为a、b、c。根据三角形的性质,我们知道三角形内角和为180度,因此可以得到以下公式:a+b+c=180接下来,我们需要利用三角形的外心来求解三角形外接圆的半径。外心是指三角形外接圆的圆心,也就是三角形三条边的垂直平分线的交点。我们可以通过外心到三角形三个顶点的距离来求解外接圆的半径。假设外心到三角形顶点A的距离为R,我们可以得到:R=a/2sinA同理,外心到三角形顶点B和顶点C的距离分别为:R=b/2sinBR=c/2sinC因为A、B、C三个角的和为180度,所以sinA、sinB、sinC互不相等。因此,我们可以通过这三个公式来求解三角形外接圆的半径R。综上所述,三角形外接圆的半径公式为:R=a/2sinA=b/2sinB=c/2sinC当我们知道三角形的三条边长时,就可以通过这个公式来计算出三角形外接圆的半径,进而求解出其他相关问题。
求三角形外接圆的公式。
已知三角形三点坐标,求其外接圆的方程的方法:1、设圆的一般方程为x^2+y^2+Dx+Ey+F=0。由该圆过已知三角形的三个顶点,将三个顶点坐标代入圆的一般方程。得到关于D,E,F的三元一次方程组,解得D,E,F即可。2、三角形任意两边的垂直平分线,两个垂直平分线的交点就是三角形外接圆的圆心。而后再确定半径,可以圆心与三角形的任一顶点距离就是半径。扩展资料:外接圆半径是三角形三条边的垂直平分线的交点到三个顶点的距离。外接圆半径R:直角三角形外接圆半径=二分之一×斜边。三角形一定有内切圆,其他的图形不一定有内切圆(一般情况下,n边形无内切圆,但也有例外,如对边之和相等的四边形有内切圆。),且内切圆圆心定在三角形内部。在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。三角形有外接圆,其他的图形不一定有外接圆。 三角形的外接圆圆心是任意两边的垂直平分线的交点。 三角形外接圆圆心叫外心。
三角形的外接圆是??
经过三角形三个定点的圆,叫做三角形的外接圆。三角形外接圆的圆心,叫三角形的外心外心是三角形各边垂直平分线交点三角形外心到三角形个顶点的距离相等
求一个三角形的外接圆的方法?
1、设圆的一般方程为x^2+y^2+Dx+Ey+F=0。由该圆过已知三角形的三个顶点,把三个顶点坐标代入圆的一般方程。得到关于D,E,F的三元一次方程组,解得D,E,F即可。2、求线段AB与BC的垂直平分线,两个垂直平分线的交点就是三角形外接圆的圆心。而后再确定半径,可以圆心与三角形的任一顶点距离就是半径。扩展资料:锐角三角形外心在三角形内部。直角三角形外心在三角形斜边中点。钝角三角形外心在三角形外。有外心的图形,一定有外接圆(各边中垂线的交点,叫做外心)外接圆圆心到三角形各个顶点的线段长度相等。过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心。在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)也可能在三角形边上(如直角三角形)。过不在同一直线上的三点可作一个圆(且只有一个圆)。
三角形外接圆半径公式有哪些?
三角形外接圆半径公式有:abc/4R。三角形的面积记作△,三边长分别是a、b、c,外接圆半径为R,那么△=abc/4R; R=abc/4△,因为△=(1/2)ah=(1/2)absinC=(1/2)ab·c/(2R)=abc/4R。经过三角形各顶点的圆叫做三角形的外接圆,表示三角形外接圆半径的方法有:1、用三角形的边和角来表示它的外接圆的半径。2、用三角形的三边来表示它的外接圆的半径。3、用三角形的三边和面积表示外接圆半径的公式等。外接圆性质:一、锐角三角形外心在三角形内部。二、直角三角形外心在三角形斜边中点。三、钝角三角形外心在三角形外。四、过三角形的三个顶点的圆叫做三角形的外接圆,其圆心叫做三角形的外心,在三角形中,三角形的外心不一定在三角形内部,可能在三角形外部(如钝角三角形)也可能在三角形边上(如直角三角形)。
三角形的外接圆与内接圆定理
三角形的外接圆定理:1、三角形各边垂直平分线的交点是外心;2、外心到三角形各顶点的距离相等;3、外心到三角形各边的垂线平分各边。三角形的内接圆定理:1、三角形各内角平分线的交点是内心;2、内心到三角形各边的距离相等;3、三角形任一顶点到内切圆的两切线长相等;4、三角形顶点到内切圆的切线长是这点到圆心的距离与它圆外部分的比例中项。
三角形外接圆的方程怎么写?
解答过程:设圆的一般方程为x^2+y^2+Dx+Ey+F=0。由该圆过已知三角形的三个顶点,将三个顶点坐标代入圆的一般方程。得到关于D,E,F的三元一次方程组,解得D,E,F即可。1、与多边形各顶点都相交的圆叫做多边形的外接圆。2、三角形有外接圆,其他的图形不一定有外接圆。 三角形的外接圆圆心是任意两边的垂直平分线的交点。 三角形外接圆圆心叫外心。扩展资料:内接圆的性质:1、在三角形中,三个角的角平分线的交点是内切圆的圆心,圆心到三角形各个边的垂线段相等。2、正多边形必然有内切圆,而且其内切圆的圆心和外接圆的圆心重合,都在正多边形的中心。3、常见辅助线:过圆心作垂直。参考资料来源:百度百科-内切圆参考资料来源:百度百科-外接圆
三角形外接圆的作法
作法:1、作三角形两条边的垂直平分线交于一点O;2、以O点为圆心,O到三角形任意一个顶点长为半径作⊙O。则圆O就是要作的三角形的外接圆。
三角形外接圆的半径怎么求
1、外接圆半径R:2、直角三角形外接圆半径=1/2×斜边。外接圆半径是三角形三条边的垂直平分线的交点到三个顶点的距离,与多边形各顶点都相交的圆叫做多边形的外接圆。定理意义:正弦定理指出了任意三角形中三条边与对应角的正弦值之间的一个关系式,由正弦函数在区间上的单调性可知,正弦定理非常好地描述了任意三角形中边与角的一种数量关系。一般地,把三角形的三个角A、B、C和它们的对边a、b、c叫做三角形的元素。已知三角形的几个元素求其他元素的过程叫做解三角形。正弦定理是解三角形的重要工具。在解三角形中,有以下的应用领域:已知三角形的两角与一边,解三角形。已知三角形的两边和其中一边所对的角,解三角形。运用a:b:c=sinA:sinB:sinC解决角之间的转换关系。
三角形与外接圆内接圆的关系
如下:①三角形的外接圆有关定理:三角形各边垂直平分线的交点,是外心。外心到三角形各顶点的距离相等。外心到三角形各边的垂线平分各边。② 三角形的内切圆有关定理:三角形各内角平分线的交点,是内心。内心到三角形各边的距离相等。三角形任一顶点到内切圆的两切线长相等。三角形顶点到内切圆的切线长,是这点到圆心的距离与它圆外部分的比例中项。有关外接圆和内切圆的性质和定理①一个三角形有确定的外接圆和内切圆。外接圆圆心是三角形各边垂直平分线的交点,到三角形三个顶点距离相等。②内切圆的圆心是三角形各内角平分线的交点,到三角形三边距离相等。③R=2S△÷L(R:内切圆半径,S:三角形面积,L:三角形周长)。④两相切圆的连心线过切点(连心线:两个圆心相连的直线)。
三角形外接圆有什么性质?
外接圆有什么性质如下:1、三角形外接圆的圆心是三角形外心,外心到三角形三个顶点的距离相等。2、三角形外接圆的半径是三角形外心到任意一个顶点的距离。3、三角形内心、垂心、重心和外心四个点共圆,即在三角形外接圆上。4、三角形外接圆的直径是三角形边上中垂线的交点,也就是三角形外心到任意两个顶点的连线。5、如果一个三角形的内角是锐角或直角,那么它的外心在三角形内部;如果一个三角形的内角是钝角,那么它的外心在三角形外部。拓展资料:一、三角形外接圆有以下7个知识点:1、三角形外接圆的圆心是三角形的外心,外心是三角形三条边的垂直平分线的交点。2、三角形外接圆的半径等于三角形三边的中线之积除以四倍三角形面积。3、三角形外接圆的直径是三角形任意一条边的对边上的高的两倍。4、欧拉线定理:三角形的垂心、重心、外心三点共线,且重心与外心的连线等于垂心与外心的连线的两倍。5、偏角定理:三角形外接圆上的一条弧所对应的圆心角等于这条弧所对应的三角形内角的补角。6、勾股定理:对于直角三角形,其斜边的一半就是外接圆的半径。7、海龙公式:三角形面积等于外接圆半径与三边长度之积的一半。二、外接圆与多边形各顶点都相交的圆叫做多边形的外接圆。三角形有外接圆,其他的图形不一定有外接圆。三角形的外接圆圆心是任意两边的垂直平分线的交点。三角形外接圆圆心叫外心。三角形有外接圆,其他的图形不一定有外接圆。三角形的外接圆圆心是任意两边的垂直平分线的交点。三角形外接圆圆心叫外心。三角形外接圆半径能部分描述三角形的结构特征,在三角形两条边长及其外接圆半径已知的情况下,可以确定唯一的三角形。
三角形外接圆的圆心是三角形的什么心
外心:三条中垂线的交点,也是三角形外接圆的圆心。 性质:到三个顶点距离相等
三角形外接园与内接圆半径与三边边长的关系
1.外接圆半径R: 根据正弦定理以及余弦定理: a/sinA=b/sinB=c/sinC=2R a2=2bcu2022cosA 可得: cosA=(b2+c2-a2)/2bc ∵ sin2A+cos2A=1,∠A∈(0,180°) ∴ sinA=√(1-cos2A) =√[(a2+b2+c2)2—2(a4+b4+c4)] / (2bc) 代入正弦定理a/sinA=2R,得: R=2abc /√[(a2+b2+c2)2—2(a4+b4+c4)] (三角形外接圆半径与三边边长、面积的关系可推导得:R=abc/4S) 2.内接圆半径r: ∵ r=2S/(a+b+c) (S是三角形面积) 且根据众所周知的秦九韶—海伦公式, S=√[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2 ∴ r=2√[p(p-a)(p-b)(p-c)] /(a+b+c) 3.三角形外接圆半径、内接圆半径与三边边长的关系可表示为: R*r=(abc/4S)*[2S/(a+b+c)]=abc/2(a+b+c) 说明: 外接圆半径是指三角形三条边的垂直平分线(中垂线)的交点到三个顶点的距离; 内接圆半径是指三角形三条边上的高线的交点到三条边的距离.
三角形内切圆 ,外接圆性质,内心,外心,中心,重心是什么?(在线等)
如图是三角形内切圆,把三角形的三个顶点都放在圆上就是外接圆内心是三角形三条内角平分线的交点,即内切圆的圆心外心是三角形三条边的垂直平分线的交点,即外接圆的圆心中心是三角形三条边的垂直平分线交点重心是三角形三边中线的交点
直角三角形外接圆的圆心怎么求
因为直角三角形斜边上的中线等于斜边的一半,又因为三角形的外切圆圆心到三角形三顶点距离相等,所以直角三角形的外切圆圆心肯定是这个三角形斜边的中点。综上所述,答案是(2.5,0)。与多边形各顶点都相交的圆叫做多边形的外接圆。三角形有外接圆,其他的图形不一定有外接圆。 三角形的外接圆圆心是任意两边的垂直平分线的交点。 三角形外接圆圆心叫外心。扩展资料:直角三角形的性质:1、直角三角形两直角边的平方和等于斜边的平方。2、在直角三角形中,两个锐角互余。3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。5、在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
怎样画一个三角形的内接圆和外接圆?
不是内接圆,是内切圆 三角形内切圆的圆心是 三个角角平分线的交点。外接圆的圆心是三边的垂直平分线的交点。具体做法:角分线:用圆规从一个角的顶点出发,在这个角的两边取相同长度的距离并做记号,然后分别以边上的两个记号为圆心,以等长的半径做圆(半径要保证两圆相交),过两圆的两个交点(或过其中一个交点和这个角的顶点)做一条直线。这条直线即将这个角平分(即角的平分线)做出3个角的角分线,交点是唯一的即内切圆圆心 (原理就是角平分线上一点到角的两边的距离相等)垂直平分线:(以线段为例,可以看作是三角形一边)分别以两个端点为圆心适当长度(相等)为半径做圆(只画出与线段相交的弧即可),再分别以两交点为圆心,等长为半径(保证两圆相交)做圆,过最后的两个圆的两个交点做直线,这条直线垂直且平分这条线段即线段的垂直平分线。做3个边的垂直平分线,取交点为圆心以交点到三角形各顶点的距离为半径做圆,得三角形外接圆。 (原理是在一个圆中,经过一条弦的中点的半径必垂直于这条弦。)
直角三角形的外接圆应该怎么画
画三条边的中垂线,交于一点(会交于斜边上)然后以这个点为圆心,这个交点到三角形任意一个顶点的距离为半径画圆(直角三角形就是以斜边的为直径,画一个圆)
三角形外接圆半径计算公式
1、外接圆半径R:2、直角三角形外接圆半径=1/2×斜边;外接圆半径是三角形三条边的垂直平分线的交点到三个顶点的距离,与多边形各顶点都相交的圆叫做多边形的外接圆。外接圆的性质:锐角三角形的中心在三角形的内部。直角三角形的外中心在其斜边的中点。钝角三角形的外中心在三角形之外。具有外中心的图形必须有一个外圆。(每侧垂直线的交点,称为外中心)外接圆中心到三角形各顶点的线段长度相等。通过三角形三个顶点的圆称为三角形的外接圆,其中心称为三角形的外中心。在三角形中,三角形的外中心可能不在三角形的内部,但可能在三角形的外部(如钝角三角形)或三角形的侧面(如直角三角形)。一个圆(并且只有一个圆)可以通过三个不在同一条线上的点来形成。
已知三角形三个点怎么求外接圆方程
先设外心为(x,y)则它到ABC三点距离相等(x-1)^2+(y-6)^2=(x+3)^2+(y-2)^2=(x-4)^2+(y+4)^2化简之8x+8y=2414x-12y=19圆心为x=55/26y=23/26按角分判定法:1、锐角三角形:三角形的三个内角都小于90度。2、直角三角形:三角形的三个内角中一个角等于90度,可记作Rt△。3、钝角三角形:三角形的三个内角中有一个角大于90度。