二次根式数学知识点

2023-11-21 17:23:43
TAG: 数学
共2条回复
再也不做站长了

二次根式一般地,形如√a的代数式叫做二次根式,其中,a叫做被开方数。当a≥0时,√a表示a的算术平方根。

因为负数没有平方根,所以是为二次根式的前提条件,如,,等是二次根式,而,等都不是二次根式。

当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。

判断一个二次根式是否为最简二次根式主要方法是根据最简二次根式的定义进行,或直观地观察被开方数的每一个因数(或因式)的指数都小于根指数2,且被开方数中不含有分母,被开方数是多项式时要先因式分解后再观察。

二分好久没看

  二次根式数学知识点 篇1

  1.乘法规定:(a≥0,b≥0)

  二次根式相乘,把被开方数相乘,根指数不变。

  推广:

  (1)(a≥0,b≥0,c≥0)

  (2)(b≥0,d≥0)

  2.乘法逆用:(a≥0,b≥0)

  积的算术平方根等于积中各因式的算术平方根的积。

  注意:公式中的a、b可以是数,也可以是代数式,但必须满足a≥0,b≥0;

  3.除法规定:(a≥0,b>0)

  二次根式相处,把被开方数相除,根指数不变。

  推广:,其中a≥0,b>0,。

  方法归纳:两个二次根式相除,可采用根号前的系数与系数对应相除,根号内的被开方数与被开方数对应相除,再把除得得结果相乘。

  4.除法逆用:(a≥0,b>0)

  商的算术平方根等于被除式的算术平方根除以除式的算术平方根。

  二次根式数学知识点 篇2

  二次根式的概念

  形如√a(a≥0)的式子叫做二次根式。

  注:在二次根式中,被开放数可以是数,也可以是单项式、多项式、分式等代数式,但必须注意:因为负数没有平方根,所以a≥0是√a为二次根式的前提条件,如√5,√(x2+1),

  √(x—1)(x≥1)等是二次根式,而√(—2),√(—x2—7)等都不是二次根式。

  二次根式取值范围

  1、二次根式有意义的条件:由二次根式的意义可知,当a≥0时√a有意义,是二次根式,所以要使二次根式有意义,只要使被开方数大于或等于零即可。

  2、二次根式无意义的条件:因负数没有算术平方根,所以当a﹤0时,√a没有意义。

  知识点三:二次根式√a(a≥0)的非负性

  √a(a≥0)表示a的算术平方根,也就是说,√a(a≥0)是一个非负数,即√a≥0(a≥0)。

  注:因为二次根式√a表示a的算术平方根,而正数的算术平方根是正数,0的算术平方根是0,所以非负数(a≥0)的算术平方根是非负数,即√a≥0(a≥0),这个性质也就是非负数的算术平方根的性质,和绝对值、偶次方类似。这个性质在解答题目时应用较多,如若√a+√b=0,则a=0,b=0;若√a+|b|=0,则a=0,b=0;若√a+b2=0,则a=0,b=0。

  二次根式的性质

  √a2=|a|

  文字语言叙述为:一个数的平方的算术平方根等于这个数的绝对值。

  注:

  1、化简√a2时,一定要弄明白被开方数的底数a是正数还是负数,若是正数或0,则等于a本身,即√a2=|a|=a(a≥0);若a是负数,则等于a的相反数—a,即√a2=|a|=—a(a﹤0);

  2、√a2中的a的取值范围可以是任意实数,即不论a取何值,√a2一定有意义;

  3、化简√a2时,先将它化成|a|,再根据绝对值的意义来进行化简。

  二次根式(√a)的性质

  (√a)2=a(a≥0)

  文字语言叙述为:一个非负数的算术平方根的平方等于这个非负数。

  注:二次根式的性质公式(√a)2=a(a≥0)是逆用平方根的定义得出的结论。上面的公式也可以反过来应用:若a≥0,则a=(√a)2,如:2=(√2)2,1/2=(√1/2)2。

  方程与方程组

  一元一次方程:①在一个方程中,只含有一个未知数,并且未知数的指数是1,这样的方程叫一元一次方程。②等式两边同时加上或减去或乘以或除以(不为0)一个代数式,所得结果仍是等式。

  解一元一次方程的步骤:去分母,移项,合并同类项,未知数系数化为1。

  二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫做二元一次方程。

  二元一次方程组:两个二元一次方程组成的方程组叫做二元一次方程组。

  适合一个二元一次方程的一组未知数的值,叫做这个二元一次方程的一个解。

  二元一次方程组中各个方程的公共解,叫做这个二元一次方程的解。

  解二元一次方程组的方法:代入消元法/加减消元法。

  一元二次方程:只有一个未知数,并且未知数的项的最高系数为2的方程

  提高数学成绩的方法

  1、怎么样提高数学成绩

  首先想要提升数学成绩,成为数学学霸的前提是要对数学有良好的学习兴趣。其次要学会课前预习,方便自己能够更加深入的吃透课堂上的知识点。然后还要学会总结复习,总结自己课堂上的问题,复习课堂上的重要知识点,从而提高自己的数学成绩。

  提升数学成绩还要拥有一个错题本,和数学资料。认真对待自己的学习工具,多做练习题,找出自己的薄弱环节和自己常犯的题型,记在错题本上,常练习,常巩固。在自己的数学资料中摸索出适合自己的解题技巧,反复练习加以运用,一定会提升你的数学成绩。

  学会听课,在课堂上勇于提问。数学最重要的部分都是在课本上,所以必须要掌握好课堂的45分钟。把握好数学课本,为自己打下一个好基础,这样才能更有效的提升你的数学成绩。学会做课堂笔记,把每节课的重要知识点记下来,以便接下来的复习。

  2、如何才能成为数学学霸

  想要提升成绩成为数学学霸,天赋是非常重要的,当然除了天赋外还要看你是否肯用心,而且学习方法也是同等重要的。

  提升数学成绩成为学霸的第一步,就是要背,记住数学里面的公式和推算方法,掌握住数学公式和推算方法有助于你答题,无论自己碰到什么样的题型,最基本的公式是必须要掌握的。因为数学答题时就算你不会,但是只要把公式写出来还是会得分的,能够更有效地提升你的成绩。

  多练习,多练习不是说搞那些所谓的题海战术,真正要练的是教材,数学教材才是真正的基础题,可以起到举一反三的作用。而且在做题的时候要的是效率,而不是量,认真分析做过的题型,你会发现他们的题型会有相似之处,能够使你更好的知道数学中的奥秘。

  二次根式数学知识点 篇3

  第1章 二次根式

  学生已经学过整式与分式,知道用式子可以表示实际问题中的数量关系。解决与数量关系有关的问题还会遇到二次根式。二次根式 一章就来认识这种式子,探索它的性质,掌握它的运算。

  在这一章,首先让学生了解二次根式的概念,并掌握以下重要结论:

  注:关于二次根式的运算,由于二次根式的乘除相对于二次根式的加减来说更易于掌握,教科书先安排二次根式的乘除,再安排二次根式的加减。二次根式的乘除一节的内容有两条发展的线索。一条是用具体计算的例子体会二次根式乘除法则的合理性,并运用二次根式的乘除法则进行运算;一条是由二次根式的乘除法则得到并运用它们进行二次根式的化简。

  二次根式的加减一节先安排二次根式加减的内容,再安排二次根式加减乘除混合运算的内容。在本节中,注意类比整式运算的有关内容。例如,让学生比较二次根式的加减与整式的加减,又如,通过例题说明在二次根式的运算中,多项式乘法法则和乘法公式仍然适用。这些处理有助于学生掌握本节内容。

  第2章 一元二次方程

  学生已经掌握了用一元一次方程解决实际问题的方法。在解决某些实际问题时还会遇到一种新方程 一元二次方程。一元二次方程一章就来认识这种方程,讨论这种方程的解法,并运用这种方程解决一些实际问题。

  本章首先通过雕像设计、制作方盒、排球比赛等问题引出一元二次方程的概念,给出一元二次方程的一般形式。然后让学生通过数值代入的方法找出某些简单的一元二次方程的解,对一元二次方程的解加以体会,并给出一元二次方程的根的概念,

  22.2降次解一元二次方程一节介绍配方法、公式法、因式分解法三种解一元二次方程的`方法。下面分别加以说明。

  (1)在介绍配方法时,首先通过实际问题引出形如 的方程。这样的方程可以化为更为简单的形如 的方程,由平方根的概念,可以得到这个方程的解。进而举例说明如何解形如 的方程。然后举例说明一元二次方程可以化为形如 的方程,引出配方法。最后安排运用配方法解一元二次方程的例题。在例题中,涉及二次项系数不是1的一元二次方程,也涉及没有实数根的一元二次方程。对于没有实数根的一元二次方程,学了公式法以后,学生对这个内容会有进一步的理解。

  (2)在介绍公式法时,首先借助配方法讨论方程 的解法,得到一元二次方程的求根公式。然后安排运用公式法解一元二次方程的例题。在例题中,涉及有两个相等实数根的一元二次方程,也涉及没有实数根的一元二次方程。由此引出一元二次方程的解的三种情况。

  (3)在介绍因式分解法时,首先通过实际问题引出易于用因式分解法的一元二次方程,引出因式分解法。然后安排运用因式分解法解一元二次方程的例题。最后对配方法、公式法、因式分解法三种解一元二次方程的方法进行小结。

  22.3实际问题与一元二次方程一节安排了四个探究栏目,分别探究传播、成本下降率、面积、匀变速运动等问题,使学生进一步体会方程是刻画现实世界的一个有效的数学模型。

  二次根式数学知识点 篇4

  (一)知识要点:

  知识点1:同类二次根式

  (Ⅰ)几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式叫做同类二次根式,如 这样的二次根式都是同类二次根式。

  (Ⅱ)判断同类二次根式的方法:(1)首先将不是最简形式的二次根式化为最简二次根式以后,再看被开方数是否相同。(2)几个二次根式是否是同类二次根式,只与被开方数及根指数有关,而与根号外的因式无关。

  知识点2:合并同类二次根式的方法

  合并同类二次根式的理论依据是逆用乘法对加法的分配律,合并同类二次根式,只把它们的系数相加,根指数和被开方数都不变,不是同类二次根式的不能合并。

  知识点3:二次根式的加减法则

  二次根式相加减先把各个二次根式化成最简二次根式,再把同类二次根式合并,合并的方法为系数相加,根式不变。

  知识点4:二次根式的混合运算方法和顺序

  运算方法是利用加、减、乘、除法则以及与多项式乘法类似法则进行混合运算。运算的顺序是先乘方,后乘除,最后加减,有括号的先算括号内的。

  知识点5:二次根式的加减法则与乘除法则的区别

  乘除法中,系数相乘,被开方数相乘,与两根式是否是同类根式无关,加减法中,系数相加,被开方数不变而且两根式须是同类最简根式。

相关推荐

最简二次根式和同类二次根式的概念是什么?

满足下列条件的二次根式,叫做最简二次根式:  (1)被开方数的因数是整数,因式是整式;  (2)被开方数中不含能开得尽方的因数或因式.判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.同类二次根式的定义:化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式.一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。
2023-11-20 19:50:091

若最简二次根式 和 是同类二次根式.求x、y的值.

分析: 根据同类二次根式的定义:①被开方数相同;②均为二次根式;列方程解组求解. ∵最简二次根式和是同类二次根式,∴3x-10=2,2x+y-5=x-3y+11,即解得:. 点评: 此题主要考查了同类二次根式的定义,即化成最简二次根式后,被开方数相同.这样的二次根式叫做同类二次根式.
2023-11-20 19:50:161

二次根式定义,性质,公式,法则

一般地,形如√a(a≥0)的代数式叫做二次根式,其中,a 叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a不是二次根式(在一元二次方程求根公式中,若根号下为负数,则无实数根)定义性质和概念编辑如果一个数的平方等于a,那么这个数叫做a的平方根。a可以是具体的数,也可以是含有字母的代数式即:若 ,则x叫做a的平方根,记作x= 。其中a叫被开方数。其中正的平方根被称为算术平方根。关于二次根式概念,应注意:被开方数可以是数 ,也可以是代数式。被开方数为正或0的,其平方根为实数;被开方数为负的,其平方根为虚数。性质1.任何一个正数的平方根有两个,它们互为相反数。如正数a的算术平方根是 ,则a的另一个平方根为﹣ ;最简形势中被开方数不能有分母存在。2.零的平方根是零,即 ;3.有理化根式:如果两个含有根式的代数式的积不再含有根式,那么这两个代数式互为有理化根式,也称互为有理化因式。运算法则编辑乘除法1.积的算数平方根的性质 (a≥0,b≥0)2. 乘法法则 (a≥0,b≥0)二次根式的乘法运算法则,用语言叙述为:两个因式的算术平方根的积,等于这两个因式积的算术平方根。3.除法法则 (a≥0,b>0)二次根式的除法运算法则,用语言叙述为:两个数的算术平方根的商,等于这两个数商的算术平方根。
2023-11-20 19:50:243

数学初中:什么是同类二次根式

几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后再判断。
2023-11-20 19:50:392

与根号2同类二次根式有哪些

有根8,根18,根32,根50等。
2023-11-20 19:50:471

同类二次根式介绍 什么是同类二次根式

同类二次根式介绍 1. 将几个二次根简化为最简二次根后,如果要提取的平方数相同,则称这些二次根为同类二次根式。 2. 二次元不能称为同类二次根式。至少有两个二次根可以称为同类二次根式。要判断几个根是否是相似的二次根,必须先对根号中的数进行化简,然后将非最简二次根转化为最简二次根进行判断。 3.相似的二次根和相似的项在表达形式和算法上都非常相似,所以我们列出了它们之间的区别和联系,在学习时注意辨别和比较。
2023-11-20 19:50:541

根号a与根号2a是同类二次根式吗

根号a与根号2a是同类二次根式.因为√a+√(2a)=√a+√2 * √a=(1+√2)*√a
2023-11-20 19:51:021

根号7等于多少

等于√7,一般不需要计算出来的啊,如果硬是要计算,那只能借助计算器了,约为2.646标准: 7^(1/2) = 2.6457513110646
2023-11-20 19:51:121

在u271416,u271472,u271448,u2714二分之一中,与u27142是同类二次根式的有几个?

√16=4√72=6√2√48=4√3√1/2=(√2)/2答:与√2是同类的二次根式的有两个,一个是√72,一个是√1/2。
2023-11-20 19:51:481

二次根式的乘法法则是什么?

二次根式的乘法法则:两个因式的算术平方根的积,等于这两个因式积的算术平方根。注意:1、公式中的非负数的条件;2、在被开方数相乘时,就应该考虑因式分解。二次根式的除法法则:两个数的算术平方根的商,等于这两个数的商的算术平方根。注意:乘、除法的运算法则要灵活运用,在实际运算中经常从等式的右边变形至等式的左边,同时还要考虑字母的取值范围,最后把运算结果化成最简二次根式。拓展资料:1.同类二次根式:被开方数相同的最简二次根式叫同类二次根式。 2.二次根式的加减运算:步骤为,去括号;化为最简二次根式;合并同类二次根式。
2023-11-20 19:51:551

什么是同类二次根式的概念

同类二次根式与同类项的异同同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。相同点1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。2. 两者都能合并,而且合并法则相同。如果把最简二次根式的根号部分看做是同类项的指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。不同点1. 判断准则不同。判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。2. 合并形式不同。教学阶梯编辑“同类二次根式定义”教学的三个梯级(1)实例引入同类二次根式定义,举正反例反复理解;(2)定义应用,充分理解“化简后,被开方数相同的二次根式”,并举几组不是最简二次根式的例子进行理解;(3)定义的拓广,从同类二次根式定义中发现一般同类根式的定义(新教材正文不做要求)。拓展应用编辑拓展与应用-一道题的联想二次根式是初二代数最重要的内容,同类二次根式又是其中最重要的概念之一。人教版初中《代数》第二册第189面关于同类二次根式的描述是“几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫同类二次根式”,显然此定义是建立在最简二次根式基础之上的。由于题目未讲明与是否是最简二次根式,同学们普遍感到难以下手。求解时,大多数同学的做法是先假定两根式都为最简二次根式,然后由同类二次根式的定义列出等式解的。为了检查正确与否,最后又进行了验算,将代入原题,得到的根式是做为特例,它们满足题意,是同类二次根式。于是题目得到了圆满解决,选择答案B。但这里得到的与都不是最简二次根式,这与解题时的假设互相矛盾。问题出在同类二次根式的概念上,概念讲明最终比较时是看最简二次根式的被开方数。而在上题中,两根式有意义的充要条件是在此范围内两根式的被开方数都是分数,根式根本不可能是最简二次根式,所以作出了的假设原本就不成立,也就意味着此题不能直接用课本定义加以判断,必须对同类二次根式的概念加以挖掘和拓展!根据课本定义有以下两点值得注意:不论几个二次根式是否为最简二次根式都有:1。若被开方数相同,必为同类二次根式,如与;2。经过一步或几步变形,若被开方数相同,必为同类二次根式。如,可变形为即可判断;或将变形为也马上可以判断;甚至可将变为,同时将变为作最终判断。
2023-11-20 19:52:141

如果最简二次根式... 和... 是同类二次根式,求...

(1)如果最简二次根式a次根号(2a+1)和根号(a+b) 是同类二次根式,求b的a次方解:根据题意得方程组:{a=2{2a+1=a+b解得:a=2,b=3所以b的a次方=3^2=9(2)已知:根号(a-2)2 =2-a 化简 根号(a2-4a+4)+根号(9-6a+a2) 解:因为根号(a-2)2 =2-a 所以2-a≥0即a≤2所以3-a≥1所以根号(3-a)^2=|3-a|=3-a所以根号(a2-4a+4)+根号(9-6a+a2)=根号(a-2)^2+根号(3-a)^2=2-a+3-a=5-2a供参考!江苏吴云超祝你学习进步
2023-11-20 19:52:232

写出一个与 是同类二次根式的二次根式:

答案不唯一,如 试题分析:同类二次根式的定义:化为最简二次根式后被开方数相同的二次根式.答案不唯一,如 点评:本题属于基础应用题,只需学生熟练掌握同类二次根式的定义,即可完成.
2023-11-20 19:52:291

重根式怎么化简?

1、同类二次根式  一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式.  2、合并同类二次根式  把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式.  3、二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并.  4、注意:有括号时,要先去括号.  二、然后就可以对二次根式进行化简了:  1、分母有理化  分母有理化即将分母从非有理数转化为有理数的过程,以下列出分母有理化的几种方法:  (1)直接利用二次根式的运算法则:  (2)利用平方差公式:  (3)利用因式分  2、换元法  换元法即把根式中的某一部分用另一个字母代替的方法,是 化简的重要方法之一请帮忙
2023-11-20 19:52:513

同类二次根式的加减

二次根式的加减法一、知识概述1、同类二次根式几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式就叫做同类二次根式.同类二次根式与整式中的同类项类似.2、二次根式的加减法法则二次根式加减时,可以先将二次根式化成最简二次根式,再将被开方数相同的二次根式进行合并.注意:(1)二次根式的加减常分为两大步骤进行,第一步化简;第二步合并;(2)在合并前应注意要先判断清楚它们中哪些二次根式的被开方数是相同的;在合并时类似于以前学过的合并同类项,只需将根号外的因式进行加减,被开方数和根指数不变.3、二次根式的混合运算二次根式的混合运算顺序与有理数中的运算顺序一样,先乘方,再乘除,最后加减,有括号的先算括号里的(或先去掉括号).注意:(1)在运算过程中,每一个根式可以看作是一个“单项式”,多个被开方数不同的二次根式的和可以看作“多项式”;(2)有理数(或整式)中的运算律、运算法则及所有的乘法公式在二次根式的运算中仍然适用;(3)二次根式的运算结果必须是最简二次根式.二、重难点知识1、二次根式的加减法运算实质上是合并同类二次根式,在进行二次根式的加减法时,注意先把各个二次根式化为最简二次根式,再把同类项合并,合并同类二次根式的方法与合并同类项类似.2、二次根式的混合运算中可以与有理数的混合运算及整式的混合运算及分式的运算作比较,使二次根式的混合运算易于理解和掌握,并能合理应用运算律及技巧进行计算.二次根式的除法运算转化为分母有理化的问题,同时可避免错误地使用运算律.
2023-11-20 19:53:031

什么叫同类二次根式,并举例

几个二次根式化成最简二次根式后,如果被开放数相同,那么这几个二次根式叫作同类二次根式。√8和√2就是同类二次根式√8化简成最简二次根式就是2√2被开放数与√2相同能理解吗? 望采纳g·m
2023-11-20 19:53:192

同类二次根式的加减

①√2x-√8x^3+2√2xy^2=√2x-2x·√2x+2│y│√2x=(1-2x+2│y│)√2x②由根号下情况知道a,b同号同正时[4b√(a/b)+2/a*√a^3b)-[3a√(b/a)+√9ab]=4b[√(ab)/b]+2/a*a√(ab)-3a[√(ab)/a]-3√(ab)=4√(ab)+2√(ab)-3√(ab)-3√(ab)=0同负时[4b√(a/b)+2/a*√a^3b)-[3a√(b/a)+√9ab]=4b[√(ab)/(-b)]+2/a*(-a)√(ab)-3a[√(ab)/(-a)]-3√(ab)=-4√(ab)-2√(ab)+3√(ab)-3√(ab)=-6√(ab)
2023-11-20 19:53:272

同类二次根式的化简

1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。2. 两者都能合并,而且合并法则相同。如果把最简二次根式的根号部分看做是同类项的指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。不同点1. 判断准则不同。判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。2. 合并形式不同。
2023-11-20 19:53:351

下列各式中与√3是同类二次根式的是( )A. √9B. √6C. √12D. ...

解:A、√9=3与√3被开方数不同,不是同类二次根式;B、√6与√3被开方数不同,不是同类二次根式;C、√12=√22与√3被开方数不同,不是同类二次根式;D、√12=2√3与√3被开方数相同,是同类二次根式.故选D.
2023-11-20 19:53:411

什么叫同类二次根式?

同类二次根式是指具有相同根号内数值的二次根式。在同类二次根式中,根号内的数值相同,但可能有不同的系数。形式上,同类二次根式的表示为:a√x 和 b√x,其中 a 和 b 是实数,且 x 是一个非负实数。举例来说,以下是一些同类二次根式:1. 2√5 和 3√52. 4√2 和 5√23. √3 和 2√34. -3√7 和 2√7在这些例子中,每对二次根式都具有相同根号内数值。虽然它们的系数可能不同,但因为根号内的数值相同,所以它们是同类二次根式。在进行二次根式的运算时,只有同类二次根式可以进行合并和简化,例如将它们相加或相减。
2023-11-20 19:54:011

什么叫同类二次根式,并举例

近几天刚刚从 中考指南上看到类似的题目同类二次根式,就是几个二次根式化成最简二次根式以后,如果被开方数相同,这几个二次根式就叫做同类二次根式。有个题这样说:根号X^3a-2 与根号 X^1-b 是同类二次根式,可知 3a-2=1-b
2023-11-20 19:54:2013

什么是同类二次根式?

化成最简二次根式后,根号下的部分相同的为同类扩展资料:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。
2023-11-20 19:54:597

什么叫同类二次根式

几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。同类二次根式与同类项的异同同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。相同点1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。2. 两者都能合并,而且合并法则相同。如果把最简二次根式的根号部分看做是同类项的指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。不同点1. 判断准则不同。判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。2. 合并形式不同。
2023-11-20 19:55:221

什么叫同类二次根式,并举例

如:3√a与5√a就属于同类二次根式
2023-11-20 19:55:311

同类二次根式的概念

几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。同类二次根式与同类项的相同点: 1、两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。 2、两者都能合并,而且合并法则相同。如果把最简二次根式的根号部分看做是同类项的指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。
2023-11-20 19:56:031

什么是同类二次根式?

化成最简二次根式后的被开方数相同。这样的二次根式叫做同类二次根式. 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。对比区别同类二次根式与同类项的异同同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。同类二次根式相同点1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。2. 两者都能合并,而且合并法则相同。我们如果把啊最简二次根式的根号部分看做是同类项的指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。  不同点1. 判断准则不同。判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应啊相同”,与系数无关。
2023-11-20 19:56:133

同类二次根式的定义同类二次根式的定义在那页?

同类二次根式的定义:化成最简二次根式后的被开方数相同。这样的二次根式叫做同类二次根式。一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。“同类二次根式定义”教学的三个梯级实例引入同类二次根式定义,举正反例反复理解;定义应用,充分理解“化简后,被开方数相同的二次根式”,并举几组不是最简二次根式的例子进行理解;定义的拓广,从同类二次根式定义中发现一般同类根式的定义。运算如下:加减法1.同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。化简:根号12等于4的根号32.合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。3.二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。扩展资料:一、最简二次根式条件1、被开方数的因数是整数或字母,因式是整式。2、被开方数中不含有可化为平方数或平方式的因数或因式。二、二次根式化简一般步骤1、把带分数或小数化成假分数。2、把开方数分解成质因数或分解因式。3、把根号内能开得尽方的因式或因数移到根号外。4、化去根号内的分母,或化去分母中的根号。5、约分。
2023-11-20 19:56:191

什么是同类二次根式

同类二次根式是指几个 二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先 化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。对比区别同类二次根式与同类项的异同同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。相同点1. 两者都是两个代数式间的一种关系。 同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。2. 两者都能合并,而且合并法则相同。如果把最简二次根式的根号部分看做是同类项的指数部分,把根号外的因式看做是同类项的 系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。不同点1. 判断准则不同。判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的 因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与 系数无关。2. 合并形式不同。
2023-11-20 19:56:292

同类二次根式的定义是什么?

几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。同类二次根式与同类项的异同:同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。相同点:1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。2. 两者都能合并,而且合并法则相同。如果把最简二次根式的根号部分看做是同类项的指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即"同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减"。不同点:1. 判断准则不同。判断两个最简二次根式是否为同类二次根式,其依据是"被开方数是否相同",与根号外的因式无关;而同类项的判断依据是"字母因式及其指数是否对应相同",与系数无关。2. 合并形式不同。
2023-11-20 19:56:481

什么叫同类二次根式?

化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式. 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简,把非最简二次根式化成最简二次根式,然后判断。
2023-11-20 19:57:047

什么是同类二次根式?

①知识点定义来源&讲解:同类二次根式是指具有相同根式部分的二次根式。二次根式指的是根号下包含一个变量的表达式,如√x、√(2x + 1)等。当两个二次根式的根号下部分相同,它们就属于同类二次根式。这个概念源自数学中对根式的分类和比较。在化简、运算、求值等问题中,分类同类二次根式可以方便进行合并、分离和计算。②知识点运用:当遇到需要合并或比较二次根式的情况时,可以判断它们是否为同类二次根式。同类二次根式可以进行加减、乘除等运算,也可以进行化简或比较大小操作。通过识别同类二次根式,可以简化根式表达式,化简运算步骤,使问题更加简洁和易解。③知识点例题讲解:例1:判断下列二次根式是否为同类二次根式:√3 和 2√3解析:这两个二次根式的根号下部分都是3,因此它们属于同类二次根式。例2:化简下列二次根式:3√5 + √5解析:这两个二次根式的根号下部分相同,都是5,所以它们是同类二次根式。可以进行合并:3√5 + √5 = (3 + 1)√5 = 4√5例3:比较下列二次根式的大小:√7 和 2√6解析:这两个二次根式的根号下部分不同,分别是7和6,因此它们不是同类二次根式。此时无法直接比较大小,需要进行进一步的操作。以上是同类二次根式的定义、运用和例题讲解。通过识别同类二次根式,可以更方便地进行根式的合并、运算和比较。
2023-11-20 19:57:311

什么是同类二次根式

什么是同类二次根式   基础数学的知识与运用是个人与团体生活中不可或缺的一部分。下面是我整理的关于同类二次根式的概念,希望大家认真阅读!    定义 :化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式。    性质: 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。   要判断几个根式是不是同类二次根式,须先化简,把非最简二次根式化成最简二次根式,然后判断。   二次根式单元训练试题及答案   一、选择题:(共30分)   1、下列根式中,不是最简二次根式的是( )   A、 B、 C、 D、   2、计算 的结果是( )   A、 B、 C、 D、   3、已知 为实数,那么 等于( )   A、 B、 C、- 1 D、 0   4、使代数式 有意义的x的取值范围是( )   A、x>3 B、x≥3 C、 x>4 D 、x≥3且x≠4   5、估算 的值在下列哪两个数之间 ( )   A、1和2 B、2和3 C、3和4 D、4和5   6、若 为实数,且 ,则 的值为( )   A、1 B、 C、2 D、   7、已知a= 15 -2 ,b=15 +2 ,则a2+b2+7 的值为( )   A、3 B、4 C、5 D、6   8、下面的等式总能成立的`是( )   A、a2 =a B、aa2 =a2 C、a b =ab D、ab =a b   9、m为实数,则m2+4m+5 的值一定是( )   A、整数 B、正整数 C、正数 D、负数   10、若代数式(2-a)2 +(a-4)2 的值是常数2,则a的取值范围是( )   A、a≥4 B、a≤2 C、2≤a≤4 D、a=2或a=4   二、填空题:(共30分)   11、函数 中,自变量 的取值范围是 .   12、当 时,化简 的结果是 .   13、计算: .   14、计算 的结果是 .   15、若 则 .   16、(1)有这样一个问题: 与下列哪些数相乘,结果是有理数?   A. B. C. D. E.   问题的答案是(只需填字母): ;   (2)如果一个数与 相乘的结果是有理数,则这个数的一般形式是什么(用代数式) .   17、若 ,则 的值是 .   18、比较大小:⑴35 26 ⑵11 -10 14 -13   19、若最简根式m2-3 与5m+3 是同类二次根式,则m= .   20、若5 的整数部分是a,小数部分是b,则a-1b = 。   三、解答题:(共60分)   21、(6分)计算: .   22、(6分)先化简,再求值: ,其中 .   23、(8分) 已知实数a满足|2003-a|+a-2004 =a,则a-20032的值是多少?   24、(8分)当a= 21-3 时,求a2-1a-1 - a2+2a+1 a2+a - 1a 的值。   25、(6分)如图,实数 、 在数轴上的位置,化简   26、(6分)解方程:3 (x-1)= 2 (x+1)   27、(8分)已知 ,求 的值。   28、(12分)先阅读下列的解答过程,然后作答:   形如m±2n 的化简,只要我们找到两个数a、b使a+b=m,ab=n,这样(a )2+(b )2=m, a b =n,那么便有m±2n =(a ±b )2 =a ±b (a>b)   例如:化简7+43 解:首先把7+43 化为7+212 ,这里m=7,n=12;由于4+3=7,4×3=12,即(4 )2+(3 )2=7, 4 3 =12 ,   ∴7+43 =7+212 =(4 +3 )2 =2+3   由上述例题的方法化简:⑴13-242 ⑵7-40 ⑶2-3 ;
2023-11-20 19:57:391

何谓同类二次根式?

同类二次根式是指具有相同根号内数值的二次根式。在同类二次根式中,根号内的数值相同,但可能有不同的系数。形式上,同类二次根式的表示为:a√x 和 b√x,其中 a 和 b 是实数,且 x 是一个非负实数。举例来说,以下是一些同类二次根式:1. 2√5 和 3√52. 4√2 和 5√23. √3 和 2√34. -3√7 和 2√7在这些例子中,每对二次根式都具有相同根号内数值。虽然它们的系数可能不同,但因为根号内的数值相同,所以它们是同类二次根式。在进行二次根式的运算时,只有同类二次根式可以进行合并和简化,例如将它们相加或相减。
2023-11-20 19:58:041

什么是同类二次根式?如何运用它们?

①知识点定义来源&讲解:同类二次根式是指具有相同根式部分的二次根式。二次根式指的是根号下包含一个变量的表达式,如√x、√(2x + 1)等。当两个二次根式的根号下部分相同,它们就属于同类二次根式。这个概念源自数学中对根式的分类和比较。在化简、运算、求值等问题中,分类同类二次根式可以方便进行合并、分离和计算。②知识点运用:当遇到需要合并或比较二次根式的情况时,可以判断它们是否为同类二次根式。同类二次根式可以进行加减、乘除等运算,也可以进行化简或比较大小操作。通过识别同类二次根式,可以简化根式表达式,化简运算步骤,使问题更加简洁和易解。③知识点例题讲解:例1:判断下列二次根式是否为同类二次根式:√3 和 2√3解析:这两个二次根式的根号下部分都是3,因此它们属于同类二次根式。例2:化简下列二次根式:3√5 + √5解析:这两个二次根式的根号下部分相同,都是5,所以它们是同类二次根式。可以进行合并:3√5 + √5 = (3 + 1)√5 = 4√5例3:比较下列二次根式的大小:√7 和 2√6解析:这两个二次根式的根号下部分不同,分别是7和6,因此它们不是同类二次根式。此时无法直接比较大小,需要进行进一步的操作。以上是同类二次根式的定义、运用和例题讲解。通过识别同类二次根式,可以更方便地进行根式的合并、运算和比较。
2023-11-20 19:58:201

同类二次根式有哪些?

同类二次根式定义:化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式。性质:一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。【要判断几个根式是不是同类二次根式,须先化简,把非最简二次根式化成最简二次根式,然后判断。】例题下列各式中,哪些是同类二次根式?解析:评析:判断几个二次根式是否为同类二次根式的关键是先化简,化简后被开方数完全相同的二次根式才是同类二次根式.望采纳,多谢。
2023-11-20 19:58:261

怎样才是是同类二次根式?

名称定义 化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式. 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。编辑本段同类二次根式与同类项的异同 同类二次根式与同类项无论在表现形式上还是运算法则上都有极类似之处,因此我们把二者的区别和联系列出,学习时注意辨析、对比来应用。 一. 相同点: 1. 两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。 2. 两者都能合并,而且合并法则相同。我们如果把最简二次根式的根号部分看做是同类项的字母及指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。 二. 不同点: 1. 判断准则不同。 判断两个最简二次根式是否为同类二次根式,其依据是“被开方数是否相同”,与根号外的因式无关;而同类项的判断依据是“字母因式及其指数是否对应相同”,与系数无关。 2. 合并形式不同
2023-11-20 19:58:331

同类二次根式的定义是什么?

化成最简二次根式后的被开方数相同。这样的二次根式叫做同类二次根式。 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。“同类二次根式定义”教学的三个梯级(1)实例引入同类二次根式定义,举正反例反复理解;(2)定义应用,充分理解“化简后,被开方数相同的二次根式”,并举几组不是最简二次根式的例子进行理解;(3)定义的拓广,从同类二次根式定义中发现一般同类根式的定义(新教材正文不做要求)。
2023-11-20 19:58:511

什么是同类二次根式?怎样判断同类二次根式?

①知识点定义来源&讲解:同类二次根式是指具有相同根式部分的二次根式。二次根式指的是根号下包含一个变量的表达式,如√x、√(2x + 1)等。当两个二次根式的根号下部分相同,它们就属于同类二次根式。这个概念源自数学中对根式的分类和比较。在化简、运算、求值等问题中,分类同类二次根式可以方便进行合并、分离和计算。②知识点运用:当遇到需要合并或比较二次根式的情况时,可以判断它们是否为同类二次根式。同类二次根式可以进行加减、乘除等运算,也可以进行化简或比较大小操作。通过识别同类二次根式,可以简化根式表达式,化简运算步骤,使问题更加简洁和易解。③知识点例题讲解:例1:判断下列二次根式是否为同类二次根式:√3 和 2√3解析:这两个二次根式的根号下部分都是3,因此它们属于同类二次根式。例2:化简下列二次根式:3√5 + √5解析:这两个二次根式的根号下部分相同,都是5,所以它们是同类二次根式。可以进行合并:3√5 + √5 = (3 + 1)√5 = 4√5例3:比较下列二次根式的大小:√7 和 2√6解析:这两个二次根式的根号下部分不同,分别是7和6,因此它们不是同类二次根式。此时无法直接比较大小,需要进行进一步的操作。以上是同类二次根式的定义、运用和例题讲解。通过识别同类二次根式,可以更方便地进行根式的合并、运算和比较。
2023-11-20 19:59:161

如何定义同类二次根式?

同类二次根式是指具有相同根号内数值的二次根式。在同类二次根式中,根号内的数值相同,但可能有不同的系数。形式上,同类二次根式的表示为:a√x 和 b√x,其中 a 和 b 是实数,且 x 是一个非负实数。举例来说,以下是一些同类二次根式:1. 2√5 和 3√52. 4√2 和 5√23. √3 和 2√34. -3√7 和 2√7在这些例子中,每对二次根式都具有相同根号内数值。虽然它们的系数可能不同,但因为根号内的数值相同,所以它们是同类二次根式。在进行二次根式的运算时,只有同类二次根式可以进行合并和简化,例如将它们相加或相减。
2023-11-20 19:59:221

同类二次根式的定义是什么?

同类二次根式定义:化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式。性质:一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。【要判断几个根式是不是同类二次根式,须先化简,把非最简二次根式化成最简二次根式,然后判断。】例题下列各式中,哪些是同类二次根式?解析:评析:判断几个二次根式是否为同类二次根式的关键是先化简,化简后被开方数完全相同的二次根式才是同类二次根式.望采纳,多谢。
2023-11-20 19:59:311

最简二次根式和同类二次根式的概念是什么?

满足下列条件的二次根式,叫做最简二次根式:  (1) 被开方数的因数是整数,因式是整式;  (2) 被开方数中不含能开得尽方的因数或因式.判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.同类二次根式的定义:化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式. 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。
2023-11-20 19:59:531

同类二次根式的概念是什么?

满足下列条件的二次根式,叫做最简二次根式:(1)被开方数的因数是整数,因式是整式;(2)被开方数中不含能开得尽方的因数或因式.判断一个二次根式是不是最简二次根式的方法,就是逐个检查定义中的两个条件是否同时满足,同时满足两个条件的就是,否则就不是.同类二次根式的定义:化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式.一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。
2023-11-20 20:00:022

什么是同类二次根式

化成最简二次根式后的被开方数相同,这样的二次根式叫做同类二次根式. 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。追问解答:周长C=3倍边长=3根号2倍的a 面积S=根号3/4倍的(边长的平方)=根号3除以2倍的a的平方
2023-11-20 20:00:112

什么是同类二次根式

同类二次根式是一种特殊的方程,它的解析形式包含两个与它相同的二次根式,即根式结构相同。它的形式为:ax^2+bx+c=0其中a、b和c为实数,而x为未知数。二次根式化简一般步骤:①把带分数或小数化成假分数②把开方数分解成质因数或分解因式③把根号内能开得尽方的因式或因数移到根号外④化去根号内的分母,或化去分母中的根号⑤约分有理化因式两个含有二次根式的代数式相乘,如果他们的积不含有二次根式,那么这两个代数式叫做互为有理化因式同类二次根式与同类项的相同点:1、两者都是两个代数式间的一种关系。同类项是两个单项间的关系,字母及相同字母的指数都相同的项;同类二次根式是两个二次根式间的关系,指化成最简二次根式后被开方数相同的二次根式。2、两者都能合并,而且合并法则相同。如果把最简二次根式的根号部分看做是同类项的指数部分,把根号外的因式看做是同类项的系数部分,那么同类二次根式的合并法则与同类项的合并法则相同,即“同类二次根式(或同类项)相加减,根式(字母)不变,系数相加减”。
2023-11-20 20:00:371

二次根式的定义

一般地,形如√a的代数式叫做二次根式,其中,a 叫做被开方数。当a≥0时,√a表示a的算术平方根;当a小于0时,√a的值为纯虚数(在一元二次方程求根公式中,若根号下为负数,则方程有两个共轭虚根)。扩展资料运算如下:加减法1.同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。 化简:根号12等于4的根号32.合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。3.二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并。
2023-11-20 20:01:015

同类二次根式是什么意思

化为最简后,被开方数相同的二次根式就是同类二次根式。同类二次根式可以合并。√2 ̄ 和2√2 ̄就是同类二次根式
2023-11-20 20:01:264

什么是同类二次根式?

化成最简二次根式后,根号下的部分相同的为同类扩展资料:几个二次根式化成最简二次根式后,如果被开方数相同,这几个二次根式叫做同类二次根式。一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。要判断几个根式是不是同类二次根式,须先化简根号里面的数,把非最简二次根式化成最简二次根式,然后判断。
2023-11-20 20:01:421

什么是同类二次根式二次根式日定义

1、同类二次根式定义:化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式。2、性质:一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。要判断几个根式是不是同类二次根式,须先化简,把非最简二次根式化成最简二次根式,然后判断。
2023-11-20 20:02:551

二次根式的定义与性质

i.二次根式的定义:一般地,形如√ā(a≥0)的式子叫做二次根式。ii.二次根式√ā的简单性质和几何意义1)√ā≥0(a≥0)[双非负性质]2)(√ā)^2=a(a≥0)[任何一个非负数都可以写成一个数的平方的形式]3)√(a^2+b^2)表示平面间两点之间的距离iii.二次根式的性质和最简二次根式1)二次根式√ā的化简a(a≥0)√ā=|a|={-a(a<0)2)积的平方根与商的平方根√ab=√a·√b(a≥0,b≥0)√a/b=√a/√b(a≥0,b≥0)3)最简二次根式条件:(1)被开方数的因数是整数或字母,因式是整式;(2)被开方数中不含有可化为平方数或平方式的因数或因式。iv.二次根式的乘法和除法1运算法则√a·√b=√ab(a≥0,b≥0)√a/b=√a/√b(a≥0,b≥0)2共轭因式如果两个含有根式的代数式的积不再含有根式,那么这两个代数式叫做共轭因式,也称互为有理化根式。v.二次根式的加法和减法1同类二次根式一般地,把几个二次根式化为最简二次根式后,如果它们的被开方数相同,就把这几个二次根式叫做同类二次根式。2合并同类二次根式把几个同类二次根式合并为一个二次根式就叫做合并同类二次根式。3二次根式加减时,可以先将二次根式化为最简二次根式,再将被开方数相同的进行合并ⅵ.二次根式的混合运算确定运算顺序灵活运用运算定律正确使用乘法公式分母有理化要及时
2023-11-20 20:03:092

什么叫同类二次根式?

化成最简二次根式后,被开方数相同。这样的二次根式叫做同类二次根式. 一个二次根式不能叫同类二次根式,至少两个二次根式才有可能称为同类二次根式。 要判断几个根式是不是同类二次根式,须先化简,把非最简二次根式化成最简二次根式,然后判断。
2023-11-20 20:03:187

猜你想看