分析方法

波特五力模型的分析方法

从一定意义上来说隶属于外部环境分析方法中的微观分析。波特五力模型用于竞争战略的分析,可以有效的分析客户的竞争环境。波特的“五力“分析法是对一个产业盈利能力和吸引力的静态断面扫描,说明的是该产业中的企业平均具有的盈利空间,所以这是一个产业形势的衡量指标,而非企业能力的衡量指标。通常,这种分析法也可用于创业能力分析,以揭示本企业在本产业或行业中具有何种盈利空间。供应商的议价能力供方主要通过其提高投入要素价格与降低单位价值质量的能力,来影响行业中现有企业的盈利能力与产品竞争力。供方力量的强弱主要取决于他们所提供给买主的是什么投入要素,当供方所提供的投入要素其价值构成了买主产品总成本的较大比例、对买主产品生产过程非常重要、或者严重影响买主产品的质量时,供方对于买主的潜在讨价还价力量就大大增强。一般来说,满足如下条件的供方集团会具有比较强大的讨价还价力量:1、供方行业为一些具有比较稳固市场地位而不受市场剧烈竞争困挠的企业所控制,其产品的买主很多,以致于每一单个买主都不可能成为供方的重要客户。2、供方各企业的产品各具有一定特色,以致于买主难以转换或转换成本太高,或者很难找到可与供方企业产品相竞争的替代品。3、供方能够方便地实行前向联合或一体化,而买主难以进行后向联合或一体化。(注:简单按中国说法,店大欺客)购买者的议价能力购买者主要通过其压价与要求提供较高的产品或服务质量的能力,来影响行业中现有企业的盈利能力。其购买者议价能力影响主要有以下原因:1、购买者的总数较少,而每个购买者的购买量较大,占了卖方销售量的很大比例。2、卖方行业由大量相对来说规模较小的企业所组成。3、购买者所购买的基本上是一种标准化产品,同时向多个卖主购买产品在经济上也完全可行。4、购买者有能力实现后向一体化,而卖主不可能前向一体化。(注:简单按中国说法,客大欺主)新进入者的威胁新进入者在给行业带来新生产能力、新资源的同时,将希望在已被现有企业瓜分完毕的市场中赢得一席之地,这就有可能会与现有企业发生原材料与市场份额的竞争,最终导致行业中现有企业盈利水平降低,严重的话还有可能危及这些企业的生存。竞争性进入威胁的严重程度取决于两方面的因素,这就是进入新领域的障碍大小与预期现有企业对于进入者的反应情况。进入障碍主要包括规模经济、产品差异、资本需要、转换成本、销售渠道开拓、政府行为与政策、不受规模支配的成本劣势、自然资源、地理环境等方面,这其中有些障碍是很难借助复制或仿造的方式来突破的。预期现有企业对进入者的反应情况,主要是采取报复行动的可能性大小,则取决于有关厂商的财力情况、报复记录、固定资产规模、行业增长速度等。总之,新企业进入一个行业的可能性大小,取决于进入者主观估计进入所能带来的潜在利益、所需花费的代价与所要承担的风险这三者的相对大小情况。替代品的威胁两个处于同行业或不同行业中的企业,可能会由于所生产的产品是互为替代品,从而在它们之间产生相互竞争行为,这种源自于替代品的竞争会以各种形式影响行业中现有企业的竞争战略。1、现有企业产品售价以及获利潜力的提高,将由于存在着能被用户方便接受的替代品而受到限制。2、由于替代品生产者的侵入,使得现有企业必须提高产品质量、或者通过降低成本来降低售价、或者使其产品具有特色,否则其销量与利润增长的目标就有可能受挫。3、源自替代品生产者的竞争强度,受产品买主转换成本高低的影响。总之,替代品价格越低、质量越好、用户转换成本越低,其所能产生的竞争压力就强;而这种来自替代品生产者的竞争压力的强度,可以具体通过考察替代品销售增长率、替代品厂家生产能力与盈利扩张情况来加以描述。奇货可居同业竞争者的竞争程度大部分行业中的企业,相互之间的利益都是紧密联系在一起的,作为企业整体战略一部分的各企业竞争战略,其目标都在于使得自己的企业获得相对于竞争对手的优势,所以,在实施中就必然会产生冲突与对抗现象,这些冲突与对抗就构成了现有企业之间的竞争。现有企业之间的竞争常常表现在价格、广告、产品介绍、售后服务等方面,其竞争强度与许多因素有关。一般来说,出现下述情况将意味着行业中现有企业之间竞争的加剧,这就是行业进入障碍较低,势均力敌竞争对手较多,竞争参与者范围广泛;市场趋于成熟,产品需求增长缓慢;竞争者企图采用降价等手段促销;竞争者提供几乎相同的产品或服务,用户转换成本很低;一个战略行动如果取得成功,其收入相当可观;行业外部实力强大的公司在接收了行业中实力薄弱企业后,发起进攻性行动,结果使得刚被接收的企业成为市场的主要竞争者;退出障碍较高,即退出竞争要比继续参与竞争代价更高。在这里,退出障碍主要受经济、战略、感情以及社会政治关系等方面考虑的影响,具体包括:资产的专用性、退出的固定费用、战略上的相互牵制、情绪上的难以接受、政府和社会的各种限制等。

大数据"背景下的审计分析方法有哪些

一、“大数据”时代的数据挖掘的应用与方法数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。所以它所得到的信息应具有未知,有效和实用三个特征。因此数据挖掘技术从一开始就是面向应用的,目前数据挖掘技术在企业市场营销中得到了比较普遍的应用。它包括:数据库营销、客户群体划分、背景分析、交叉销售等市场分析行为,以及客户流失性分析、客户信用记分、欺诈发现等。审计部门的数据挖掘以往偏重于对大金额数据的分析,来确实是否存在问题,以及问题在数据中的表现,而随着绩效审计的兴起,审计部门也需要通过数据来对被审计单位的各类行为做出审计评价,这些也都需要数据的支撑。数据挖掘的方法有很多,它们分别从不同的角度对数据进行挖掘。其中绝大部分都可以用于审计工作中。1. 数据概化。数据库中通常存放着大量的细节数据, 通过数据概化可将大量与任务相关的数据集从较低的概念层抽象到较高的概念层。数据概化可应用于审计数据分析中的描述式挖掘, 审计人员可从不同的粒度和不同的角度描述数据集, 从而了解某类数据的概貌。大量研究证实, 与正常的财务报告相比, 虚假财务报告常具有某种结构上的特征。审计人员可以采用概念描述技术对存储在被审计数据库中的数据实施数据挖掘, 通过使用属性概化、属性相关分析等数据概化技术将详细的财务数据在较高层次上表达出来, 以得到财务报告的一般属性特征描述, 从而为审计人员判断虚假财务报告提供依据。2.统计分析。它是基于模型的方法, 包括回归分析、因子分析和判别分析等, 用此方法可对数据进行分类和预测。通过分类挖掘对被审计数据库中的各类数据挖掘出其数据的描述或模型, 或者审计人员通过建立的统计模型对被审计单位的大量财务或业务历史数据进行预测分析, 根据分析的预测值和审计值进行比较, 都能帮助审计人员从中发现审计疑点, 从而将其列为审计重点。3. 聚类分析。聚类分析是把一组个体按照相似性归成若干类别, 目的是使得同一类别的个体之间的距离尽可能地小, 而不同类别的个体间的距离尽可能地大, 该方法可为不同的信息用户提供不同类别的信息集。如审计人员可运用该方法识别密集和稀疏的区域, 从而发现被审计数据的分布模式, 以及数据属性间的关系, 以进一步确定重点审计领域。企业的财务报表数据会随着企业经营业务的变化而变化, 一般来说, 真实的财务报表中主要项目的数据变动具有一定的规律性, 如果其变动表现异常, 表明数据中的异常点可能隐藏了重要的信息, 反映了被审计报表项目数据可能存在虚假成分。4. 关联分析。它通过利用关联规则可以从操作数据库的所有细节或事务中抽取频繁出现的模式, 其目的是挖掘隐藏在数据间的相互关系。利用关联分析, 审计人员可通过对被审计数据库中的数据利用关联规则进行挖掘分析, 找出被审计数据库中不同数据项之间的联系, 从而发现存在异常联系的数据项, 在此基础上通过进一步分析, 发现审计疑点。 二、应对“大数据”时代,审计分析应做出的调整从以上分析过程中,我们不难看出“大数据”时代的数据存贮、处理、分析以及挖掘的各个方面虽然与传统方式相比,在技术层面上有了较大的改变,但是在基本的原理方面并没有显著的改变,原有的审计分析模式没有必要因为“大数据”时代的来临而急于做出相应的改变。然而“大数据”时代在给审计分析带来机遇的同时,还是给我们带给了相当大的冲击,对此我们有必要引起相当的重视,并在日后的信息化建设过程做出相应的调整。1、数据的存贮与处理。大数据分析应用需求正在影响着数据存储基础设施的发展。随着结构化数据和非结构化数据量的持续增长,以及分析数据来源的多样化,此前存储系统的设计已经无法满足大数据应用的需要。基于块和文件的存储系统的架构设计需要进行调整以适应这些新的要求。审计部门在选择相应的存贮系统的时候,要对非结构化数据有足够的重视,做好采集的相关准备。同时随着采集数据的单位和年份越来越多,数据量必然是会有大规模的增长。即使是海量数据存储系统也一定要有相应等级的扩展能力。存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。同时,为了提高数据的处理能力,解决I/O的瓶颈问题,可以考虑各种模式的固态存储设备,小到简单的在服务器内部做高速缓存,大到全固态介质可扩展存储系统通过高性能闪存存储都是可以考虑使用的设备。2、非结构化的数据处理。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。3、可视化的分析。数据分析的使用者有数据分析专家,同时还有普通用户,但是他们二者对于数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。“一个平台、两个中心”建设,是审计署目前信息化建设的重要内容。通过数据中心的建设,可以在相当程度上解决数据存储与处理的问题;而数据式审计分析平台,同样可以在一定程度上实行可视化分析的相当一部分功能,但是对于越来越庞大的非结构化数据的存储和处理,将会是审计部门接下来所面临的最大的挑战。

大数据背景下的审计分析方法有哪些?

一、“大数据”时代的数据挖掘的应用与方法数据挖掘是在没有明确假设的前提下去挖掘信息、发现知识。所以它所得到的信息应具有未知,有效和实用三个特征。因此数据挖掘技术从一开始就是面向应用的,目前数据挖掘技术在企业市场营销中得到了比较普遍的应用。它包括:数据库营销、客户群体划分、背景分析、交叉销售等市场分析行为,以及客户流失性分析、客户信用记分、欺诈发现等。审计部门的数据挖掘以往偏重于对大金额数据的分析,来确实是否存在问题,以及问题在数据中的表现,而随着绩效审计的兴起,审计部门也需要通过数据来对被审计单位的各类行为做出审计评价,这些也都需要数据的支撑。数据挖掘的方法有很多,它们分别从不同的角度对数据进行挖掘。其中绝大部分都可以用于审计工作中。1. 数据概化。数据库中通常存放着大量的细节数据, 通过数据概化可将大量与任务相关的数据集从较低的概念层抽象到较高的概念层。数据概化可应用于审计数据分析中的描述式挖掘, 审计人员可从不同的粒度和不同的角度描述数据集, 从而了解某类数据的概貌。大量研究证实, 与正常的财务报告相比, 虚假财务报告常具有某种结构上的特征。审计人员可以采用概念描述技术对存储在被审计数据库中的数据实施数据挖掘, 通过使用属性概化、属性相关分析等数据概化技术将详细的财务数据在较高层次上表达出来, 以得到财务报告的一般属性特征描述, 从而为审计人员判断虚假财务报告提供依据。2.统计分析。它是基于模型的方法, 包括回归分析、因子分析和判别分析等, 用此方法可对数据进行分类和预测。通过分类挖掘对被审计数据库中的各类数据挖掘出其数据的描述或模型, 或者审计人员通过建立的统计模型对被审计单位的大量财务或业务历史数据进行预测分析, 根据分析的预测值和审计值进行比较, 都能帮助审计人员从中发现审计疑点, 从而将其列为审计重点。3. 聚类分析。聚类分析是把一组个体按照相似性归成若干类别, 目的是使得同一类别的个体之间的距离尽可能地小, 而不同类别的个体间的距离尽可能地大, 该方法可为不同的信息用户提供不同类别的信息集。如审计人员可运用该方法识别密集和稀疏的区域, 从而发现被审计数据的分布模式, 以及数据属性间的关系, 以进一步确定重点审计领域。企业的财务报表数据会随着企业经营业务的变化而变化, 一般来说, 真实的财务报表中主要项目的数据变动具有一定的规律性, 如果其变动表现异常, 表明数据中的异常点可能隐藏了重要的信息, 反映了被审计报表项目数据可能存在虚假成分。4. 关联分析。它通过利用关联规则可以从操作数据库的所有细节或事务中抽取频繁出现的模式, 其目的是挖掘隐藏在数据间的相互关系。利用关联分析, 审计人员可通过对被审计数据库中的数据利用关联规则进行挖掘分析, 找出被审计数据库中不同数据项之间的联系, 从而发现存在异常联系的数据项, 在此基础上通过进一步分析, 发现审计疑点。 二、应对“大数据”时代,审计分析应做出的调整从以上分析过程中,我们不难看出“大数据”时代的数据存贮、处理、分析以及挖掘的各个方面虽然与传统方式相比,在技术层面上有了较大的改变,但是在基本的原理方面并没有显著的改变,原有的审计分析模式没有必要因为“大数据”时代的来临而急于做出相应的改变。然而“大数据”时代在给审计分析带来机遇的同时,还是给我们带给了相当大的冲击,对此我们有必要引起相当的重视,并在日后的信息化建设过程做出相应的调整。1、数据的存贮与处理。大数据分析应用需求正在影响着数据存储基础设施的发展。随着结构化数据和非结构化数据量的持续增长,以及分析数据来源的多样化,此前存储系统的设计已经无法满足大数据应用的需要。基于块和文件的存储系统的架构设计需要进行调整以适应这些新的要求。审计部门在选择相应的存贮系统的时候,要对非结构化数据有足够的重视,做好采集的相关准备。同时随着采集数据的单位和年份越来越多,数据量必然是会有大规模的增长。即使是海量数据存储系统也一定要有相应等级的扩展能力。存储系统的扩展一定要简便,可以通过增加模块或磁盘柜来增加容量,甚至不需要停机。同时,为了提高数据的处理能力,解决I/O的瓶颈问题,可以考虑各种模式的固态存储设备,小到简单的在服务器内部做高速缓存,大到全固态介质可扩展存储系统通过高性能闪存存储都是可以考虑使用的设备。2、非结构化的数据处理。非结构化数据的多元化给数据分析带来新的挑战,我们需要一套工具系统的去分析,提炼数据。语义引擎需要设计到有足够的人工智能以足以从数据中主动地提取信息。3、可视化的分析。数据分析的使用者有数据分析专家,同时还有普通用户,但是他们二者对于数据分析最基本的要求就是可视化分析,因为可视化分析能够直观的呈现大数据特点,同时能够非常容易被读者所接受,就如同看图说话一样简单明了。“一个平台、两个中心”建设,是审计署目前信息化建设的重要内容。通过数据中心的建设,可以在相当程度上解决数据存储与处理的问题;而数据式审计分析平台,同样可以在一定程度上实行可视化分析的相当一部分功能,但是对于越来越庞大的非结构化数据的存储和处理,将会是审计部门接下来所面临的最大的挑战。

常用的直观经验分析方法有()等。

【答案】:B、D常用的危险、有害因素辨识方法有直观经验分析方法(包含对照经验法和类比方法)和系统安全分析方法。

大数据掘金之中的数据分析方法不哪些

数据挖掘最常见的十种方法:1、基于历史的MBR分析(Memory-Based Reasoning;MBR)基于历史的MBR分析方法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。2、购物篮分析(Market Basket Analysis)购物篮分析最主要的目的在于找出什么样的东西应该放在一起?商业上的应用在藉由顾客的购买行为来了解是什么样的顾客以及这些顾客为什么买这些产品,找出相 关的联想(association)规则,企业藉由这些规则的挖掘获得利益与建立竞争优势。举例来说,零售店可藉由此分析改变置物架上的商品排列或是设计 吸引客户的商业套餐等等。3、决策树(Decision Trees)决策树在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策 树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元 树、三元树或混和的决策树型态。4、遗传算法(Genetic Algorithm)遗传算法学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。基因算法的运作方式也很类似,它必须预先建立好一个模式,再经 由一连串类似产生新细胞过程的运作,利用适合函数(fitness function)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。基因算法在群集 (cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。5、聚类分析(Cluster Detection)这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。6、连接分析(Link Analysis)连接分析是以数学中之图形理论(graph theory)为基础,藉由记录之间的关系发展出一个模式,它是以关系为主体,由人与人、物与物或是人与物的关系发展出相当多的应用。例如电信服务业可藉 连结分析收集到顾客使用电话的时间与频率,进而推断顾客使用偏好为何,提出有利于公司的方案。除了电信业之外,愈来愈多的营销业者亦利用连结分析做有利于 企业的研究。7、OLAP分析(On-Line Analytic Processing;OLAP)严格说起来,OLAP分析并不算特别的一个数据挖掘技术,但是透过在线分析处理工具,使用者能更清楚的了解数据所隐藏的潜在意涵。如同一些视觉处理技术一般,透过图表或图形等方式显现,对一般人而言,感觉会更友善。这样的工具亦能辅助将数据转变成信息的目标。8、神经网络(Neural Networks)神经网络是以重复学习的方法,将一串例子交与学习,使其归纳出一足以区分的样式。若面对新的例证,神经网络即可根据其过去学习的成果归纳后,推导出新的结果,乃属于机器学习的一种。数据挖掘的相关问题也可采类神经学习的方式,其学习效果十分正确并可做预测功能。9、判别分析(Discriminant Analysis)当所遭遇问题它的因变量为定性(categorical),而自变量(预测变量)为定量(metric)时,判别分析为一非常适当之技术,通常应用在解决 分类的问题上面。若因变量由两个群体所构成,称之为双群体 —判别分析 (Two-Group Discriminant Analysis);若由多个群体构成,则称之为多元判别分析(Multiple Discriminant Analysis;MDA)。10、罗吉斯回归分析(Logistic Analysis)当判别分析中群体不符合正态分布假设时,罗吉斯回归分析是一个很好的替代方法。罗吉斯回归分析并非预测事件(event)是否发生,而是预测该事件的机 率。它将自变量与因变量的关系假定是S行的形状,当自变量很小时,机率值接近为零;当自变量值慢慢增加时,机率值沿着曲线增加,增加到一定程度时,曲线协 率开始减小,故机率值介于0与1之间。

数据挖掘中实用分析方法有哪些?

1.基于历史的MBR分析基于历史(Memory-Based Reasoning)的MBR分析方法最主要的概念是用已知的案例(case)来预测未来案例的一些属性(attribute),通常找寻最相似的案例来做比较。MBR中有两个主要的要素,分别为距离函数(distance function)与结合函数(combination function)。距离函数的用意在找出最相似的案例;结合函数则将相似案例的属性结合起来,以供预测之用。MBR的优点是它容许各种型态的数据,这些数据不需服从某些假设。另一个优点是其具备学习能力,它能藉由旧案例的学习来获取关于新案例的知识。较令人诟病的是它需要大量的历史数据,有足够的历史数据方能做良好的预测。此外记忆基础推理法在处理上亦较为费时,不易发现最佳的距离函数与结合函数。其可应用的范围包括欺骗行为的侦测、客户反应预测、医学诊疗、反应的归类等方面。2.购物篮分析购物篮分析(Market Basket Analysis)最主要的目的在于找出什么样的东西应该放在一起商业上的应用在藉由顾客的购买行为来了解是什么样的顾客以及这些顾客为什么买这些产品, 找出相关的联想(association)规则,企业藉由这些规则的挖掘获得利益与建立竞争优势。举例来说,零售店可藉由此分析改变置物架上的商品排列或是设计 吸引客户的商业套餐等等。购物篮分析基本运作过程包含下列三点:选择正确的品项:这里所指的正确乃是针对企业体而言,必须要在数以百计、千计品项中选择出真正有用的品项出来。经由对共同发生矩阵(co-occurrence matrix)的探讨挖掘出联想规则。克服实际上的限制:所选择的品项愈多,计算所耗费的资源与时间愈久(呈现指数递增),此时必须运用一些技术以降低资源与时间的损耗。购物篮分析技术可以应用在下列问题上:针对信用卡购物,能够预测未来顾客可能购买什么。对于电信与金融服务业而言,经由购物篮分析能够设计不同的服务组合以扩大利润。保险业能藉由购物篮分析侦测出可能不寻常的投保组合并作预防。对病人而言,在疗程的组合上,购物篮分析能作为是否这些疗程组合会导致并发症的判断依据。3.决策树决策树(Decision Trees)在解决归类与预测上有着极强的能力,它以法则的方式表达,而这些法则则以一连串的问题表示出来,经由不断询问问题最终能导出所需的结果。典型的决策树顶端是一个树根,底部有许多的树叶,它将纪录分解成不同的子集,每个子集中的字段可能都包含一个简单的法则。此外,决策树可能有着不同的外型,例如二元 树、三元树或混和的决策树型态。4.遗传算法遗传算法(Genetic Algorithm)学习细胞演化的过程,细胞间可经由不断的选择、复制、交配、突变产生更佳的新细胞。基因算法的运作方式也很类似,它必须预先建立好一个模式,再经由一连串类似产生新细胞过程的运作,利用适合函数(fitness function)决定所产生的后代是否与这个模式吻合,最后仅有最吻合的结果能够存活,这个程序一直运作直到此函数收敛到最佳解。基因算法在群集 (cluster)问题上有不错的表现,一般可用来辅助记忆基础推理法与类神经网络的应用。5.聚类分析聚类分析(Cluster Detection)这个技术涵盖范围相当广泛,包含基因算法、类神经网络、统计学中的群集分析都有这个功能。它的目标为找出数据中以前未知的相似群体,在许许多多的分析中,刚开始都运用到群集侦测技术,以作为研究的开端。

决策树分析方法的基本步骤

决策树分析方法的基本步骤1.绘制决策树图。从左到右的顺序画决策树,此过程本身就是对决策问题的再分析过程。2.按从右到左的顺序计算各方案的期望值,并将结果写在相应方案节点上方。期望值的计算是从右到左沿着决策树的反方向进行计算的。3.对比各方案的期望值的大小,将期望值小的方案(即劣等方案)剪掉,所剩的最后方案为最佳方案。决策树(简称DT)利用概率论的原理,并且利用一种树形图作为分析工具。其基本原理是用决策点代表决策问题,用方案分枝代表可供选择的方案,用概率分枝代表方案可能出现的各种结果,经过对各种方案在各种结果条件下损益值的计算比较,为决策者提供决策依据。优点:1) 可以生成可以理解的规则;2) 计算量相对来说不是很大;3) 可以处理连续和种类字段;4) 决策树可以清晰的显示哪些字段比较重要。缺点:1) 对连续性的字段比较难预测;2) 对有时间顺序的数据,需要很多预处理的工作;3) 当类别太多时,错误可能就会增加的比较快;4) 一般的算法分类的时候,只是根据一个字段来分类。

浅析企业偿债能力分析方法

浅析企业偿债能力分析方法    一、影响企业偿债能力的主要因素   1.1影响企业短期偿债能力的主要因素流动资产质量、经营现金流量水平、流动负债的规模、构成项目等是影响企业短期偿债能力的主要因素。   1.1.1流动资产的质量   企业的固定资产决定着企业的实力,但流动资产决定着企业的经营状况。资产需要流动,资产的流动是指企业资产转换成现金的能力,包括是否能不受损失地转换为现金以及转换需要的时间。流动资产是企业进行经营活动的短期资源准备,流动资产的质量也影响今后经营活动中产生现金的能力,它是偿还流动负债的物质保证,因此,流动资产的流动性从根本上决定了企业偿还流动负债的能力。流动资产的质量与企业短期偿债能力成正比例关系。流动资产的数量多,就意味着企业能在短期内偿还负债;流动资产减少,说明企业可以偿还的资产和资金减少,不利于企业清偿债务。   1.1.2企业的经营现金流量水平   现金是企业所有资产中最活跃的因素,也是偿还企业短期债务的最常见的方式。现金的多少对企业短期债务偿还具有重要的作用。现金流量产生在生产经营活动中,比如在销售活动中就会产生大量的现金流入,这样就能满足企业偿还短期债务的需求。   1.1.3债务偿还的"时间性和紧迫性   债务偿还都有时间限制,债权人都要规定一个期限让企业来偿还债务。这个期限与紧迫性联系紧密,一般来说,企业偿债能力越强,就越能在最短的时间和最紧迫的时间内偿还债务,这样就能获得良好的信誉。反之,如果企业拖延偿还债务,会影响债权人与企业之间的关系。   1.2影响企业长期偿债能力的主要因素   一般来说,资本组成和长期赢利水平与经营活动现金流量是影响企业长期偿债能力地主要因素。   1.2.1资本组成   资本由负债和所有者权益组成。所有者权益属于永久性资本,不用偿还,几乎没有风险。负债是必须偿还的指标,有一定的风险,负债越多,风险就越大,不能偿还本息的可能性也越大;而所有者权益所占的比例越高,企业的稳定性越强,风险越低,所以资本组成直接影响着企业的长期偿债能力。   1.2.2长期赢利水平与经营活动现金流量   企业的生存之本是赢利,而长期赢利是企业所追求的最高境界,所以长期赢利水平的高低影响企业长期偿债能力。经营活动现金流量是一个动态的指标,只要保持相对稳定的状态,对企业还债就具有积极的意义。   二、企业偿债能力的财务分析方法   企业偿债能力的高低,通过财务分析方法也可以体现出来。常见的财务分析方法有:水平分析法、垂直分析法、趋势分析法、比率分析法、因素分析法等。我们一般通过水平分析法来解决这个问题,其中的一些指标是非常重要的,如资产负债率、净资产报酬率、流动比率、速动比率、流动资产和流动负债等。资产负债率是考核企业偿债能力的指标。资产负债率是负债与资产的比率,就是负债在整个资产中所占的比率,一般来说,低于30%是一个安全范围,在这个范围之下数值越低,表示企业负债越少,所留的资金就会越充裕,有足够的偿债能力。如果超过70%这个范围,说明负债的比例过高,信用度降低,偿债能力随之降低,风险相应增加。资产负债率经常和净资产报酬率联系在一起,资产报酬率是企业一定时期内获得的报酬总额与平均资产总额的比率。它是反映企业资产综合利用效果的指标,也是衡量企业利用债权人和所有者权益总额所取得赢利的重要指标。该指标越高,表明企业的资产利用效益越好,企业赢利能力越强,经营管理水平越高,因此资产报酬率越高,企业偿债能力也越强。另外,还有两个相关的财务指标与企业偿债能力有关,即流动比率和速动比率。流动比率是流动资产除以流动负债的比率。流动比率主要反映公司短期偿债能力,流动比率与企业偿债能力成正相关,数值越高,企业偿债能力越强。流动资产和流动负债的关系也反映企业偿债能力,流动资产和流动负债增长的数值越大,说明收益增长也越多,企业的偿债能力也越强。如果单纯是流动资产增长,对企业也有利。    三、结语   总之,企业在经营过程中,要规避风险,就要采用财务分析方法提高自己的偿债能力,只有如此才能抵御风险,在激烈的市场竞争中占有一席之地。 ;

急求SWOT分析方法

  SWOT分析方法是一种企业内部分析方法,即根据企业自身的既定内在条件进行分析,找出企业的优势、劣势及核心竞争力之所在。其中,S代表 strength(优势),W代表weakness(弱势),O代表opportunity(机会),T代表threat(威胁),其中,S、W是内部因素,O、T是外部因素。按照企业竞争战略的完整概念,战略应是一个企业“能够做的”(即组织的强项和弱项)和“可能做的”(即环境的机会和威胁)之间的有机组合。  SWOT分析步骤  强势——弱势——机会——威胁     从竞争角度看,对成本措施的抉择分析,不仅来自于对企业内部因素的分析判断,还来自于对竞争态势的分析判断。成本的强势——弱势——机会——威胁(SWOT)分析的核心思想是通过对企业外部环境与内部条件的分析,明确企业可利用的机会和可能面临的风险,并将这些机会和风险与企业的优势和缺点结合起来,形成企业成本控制的不同战略措施。   SWOT分析基本步骤为:   (1)分析企业的内部优势、弱点既可以相对企业目标而言的,也可以相对竞争对手而言的。   (2)分析企业面临的外部机会与威胁,可能来自于与竞争无关的外环境因素的变化,也可能来自于竞争对手力量与因素变化,或二者兼有,但关键性的外部机会与威胁应予以确认。   (3)将外部机会和威胁与企业内部优势和弱点进行匹配,形成可行的战略。   SWOT分析有四种不同类型的组合:   优势——机会(SO)组合、弱点——机会(WO)组合、优势——威胁(ST)组合和弱点——威胁(WT)组合。    优势——机会(SO)战略是一种发展企业内部优势与利用外部机会的战略,是一种理想的战略模式。当企业具有特定方面的优势,而外部环境又为发挥这种优势提供有利机会时,可以采取该战略。例如良好的产品市场前景、供应商规模扩大和竞争对手有财务危机等外部条件,配以企业市场份额提高等内在优势可成为企业收购竞争对手、扩大生产规模的有利条件。   弱点——机会(WO)战略是利用外部机会来弥补内部弱点,使企业改劣势而获取优势的战略。存在外部机会,但由于企业存在一些内部弱点而妨碍其利用机会,可采取措施先克服这些弱点。例如,若企业弱点是原材料供应不足和生产能力不够,从成本角度看,前者会导致开工不足、生产能力闲置、单位成本上升,而加班加点会导致一些附加费用。在产品市场前景看好的前提下,企业可利用供应商扩大规模、新技术设备降价、竞争对手财务危机等机会,实现纵向整合战略,重构企业价值链,以保证原材料供应,同时可考虑购置生产线来克服生产能力不足及设备老化等缺点。通过克服这些弱点,企业可能进一步利用各种外部机会,降低成本,取得成本优势,最终赢得竞争优势。   优势——威胁(ST)战略是指企业利用自身优势,回避或减轻外部威胁所造成的影响。如竞争对手利用新技术大幅度降低成本,给企业很大成本压力;同时材料供应紧张,其价格可能上涨;消费者要求大幅度提高产品质量;企业还要支付高额环保成本;等等,这些都会导致企业成本状况进一步恶化,使之在竞争中处于非常不利的地位,但若企业拥有充足的现金、熟练的技术工人和较强的产品开发能力,便可利用这些优势开发新工艺,简化生产工艺过程,提高原材料利用率,从而降低材料消耗和生产成本。另外,开发新技术产品也是企业可选择的战略。新技术、新材料和新工艺的开发与应用是最具潜力的成本降低措施,同时它可提高产品质量,从而回避外部威胁影响。   弱点——威胁(WT)战略是一种旨在减少内部弱点,回避外部环境威胁的防御性技术。当企业存在内忧外患时,往往面临生存危机,降低成本也许成为改变劣势的主要措施。当企业成本状况恶化,原材料供应不足,生产能力不够,无法实现规模效益,且设备老化,使企业在成本方面难以有大作为,这时将迫使企业采取目标聚集战略或差异化战略,以回避成本方面的劣势,并回避成本原因带来的威胁。SWOT分析运用于企业成本战略分析可发挥企业优势,利用机会克服弱点,回避风险,获取或维护成本优势,将企业成本控制战略建立在对内外部因素分析及对竞争势态的判断等基础上。而若要充分认识企业的优势、机会、弱点及正在面临或即将面临的风险;价值链分析和标杆分析等均等为其提供方法与途径。

SWOT分析方法的具体分析过程

对分析工具的认识系列-认识SWOT 认识SWOT分析法 SWOT分析法是制订企业战略决策、竞争情报分析中常用的方法之一.企业管理者可以运用SWOT方法,了解当前企业环境,未来竞争状况,制订一套能适应当前,也能因应未来的企业策略. 所谓SWOT分析,也称为态势分析、知己知彼战略.就是将与研究对象密切相关的各种主要内部优势因素(Strengths)、弱点因素(Weaknesses)、机会因素(Opportunities)和威胁因素(Threats),通过调查罗列出来,并依照一段的次序按矩阵形式排列起来,然后运用系统分析的思想,把各种因素相互匹配起来加以分析,从中得出一系列相应的结论或对策. 这种研究方法,最早是由美国旧金山大学的管理学教授在80年代初提出来的,其研究基础是波特提出的波特模型. 一、SWOT分析主要步骤 1、分析环境因素 运用各种调查研究方法,分析出公司所处的各种环境因素,即外部环境因素和内部能力因素.外部环境因素包括机会因素和威胁因素,它们是外部环境对公司的发展直接有影响的有利和不利因素,属于客观因素,一般归属为经济的、政治的、社会的、人口的、产品和服务的、技术的、市场的、竞争的等不同范畴;内部环境因素包括优势因素和弱点因素,它们是公司在其发展中自身存在的积极和消极因素,属主动因素,一般归类为管理的、组织的经营的、财务的、销售的、人力资源的等不同范畴.在调查分析这些因素时,不仅要考虑到公司的历史与现状,而且更要考虑公司的未来发展. 2、构造SWOT矩阵 将调查得出的各种因素根据轻重缓急或影响程度等排序方式,构造SWOT矩阵.在此过程中,将那些对公司发展有直接的、重要的、大量的、迫切的、久远的影响因素优先排列出来,而将那些间接的、次要的、少许的、不急的、短暂的影响因素排列在后面. 3、制定行动计划 在完成环境因素分析和SWOT矩阵的构造后,便可以制定出相应的行动计划.制定计划的基本思路是:发挥优势因素,克服弱点因素,利用机会因素,化解威胁因素;考虑过去,立足当前,着眼未来.运用系统分析的综合分析方法,将排列与考虑的各种环境因素相互匹配起来加以组合,得出一系列公司未来发展的可选择对策. 二、SWOT分析的一般方法 SWOT分析是一种对企业的优势、劣势、机会和威胁的分析,在分析时,应把所有的内部因素(包括公司的优势和劣势)都集中在一起,然后用外部的力量来对这些因素进行评估.这些外部力量包括机会和威胁,它们是由于竞争力量或企业环境中的趋势所造成的.这些因素的平衡决定了公司应做什么以及什么时候去做.可按以下步骤完成这个SWOT分析表: 1、把识别出的所有优势分成两组,分的时候应以下面的原则为基础:看看它们是与行业中潜在的机会有关,还是与潜在的威胁有关. 2、用同样的方法把所有劣势分成两组.一组与机会有关,另一组与威胁有关. 3、建构一个表格,每个占1/4. 4、把公司的优势和劣势与机会或威胁配对,分别放在每个格子中.SWOT表格表明公司内部的优势和劣势与外部机会和威胁的平衡. 在企业计划中,一定要把以下步骤都写出来: 1、在某些领域内可能面临来自竞争者的威胁;或者在变化的环境中有一种不利的趋势,在这些领域或趋势中,公司会有些劣势,那么要把这些劣势消除掉. 2、利用那些机会,这是公司真正的优势. 3、某些领域中可能有潜在的机会,把这些领域中的劣势加以改进. 4、对目前有优势的领域进行监控,以便在潜在的威胁可能出现的时候不感到吃惊. 三、战略决策选择 在为将来做计划时,确定企业的能力和资源代表的是可利用的优势还是劣势,这一点是很重要的.成功的决定因素指的是那些公司成功所必须具备的能力和资源.把这些与成功的决定因素放在一起,就可以形成一个表格,它反过来可以让你做一下比较:你的能力和资源与行业中重要的能力和资源的比较,这将有助于让你识别出公司目前的优势与劣势. SWOT分析法提供了分析的框架,注重三个要素:目标;外部环境、内部条件,是一种非常简捷明了的方法.通过内部与外部之间的比较,确定企业实施什么样的战略.: 增长型战略:内部、外部条件都非常好,宜大力发展. 扭转型战略:外部条件很好,内部有问题,要把握机会,调整方向. 防御型战略:外部、内部条件均不如意,不能进攻,也无力扭转. 多元经营战略:内部资源丰富,外部有威胁,为分散风险而实施多元化的战略,即“不把鸡蛋放在一个篮子里”. 四、SWOT运用方面 (一)、企业外部环境分析 1、市场分析 (1)现有的产品在市场上的地位; (2)产品在市场中的变化,变化的趋势与速度; (3)产品在市场上的变化,对企业所产生的影响; (4)消费者消费行为的走向; (5)市场中产品种类的消长状况; (6)市场上有哪些新产品的未来空间. 2、竞争状况 (1)在现有市场上谁是我们的主要竞争者,在可预测的未来市场上,谁又是我们的主要竞争者,并将这些竞争者,透过市场调查一一的罗列出来; (2)这些竞争者他们的优势与缺点客观的列出; (3)针对主要的竞争者,其优势,用何策略去缩短距离,甚至赶到前面. 3、科技发展 (1)是否可预见新科技发展会影响生产方法或成本; (2)是否可预见新的科技出现的产品对现有的产品有替代性; (3)随着科技的发展,消费者的消费习惯是否会随其变更; (4)本身企业的研究发展基础如何. 4、经济影响 (1)消费市场的经济成长状况; (2)是民生必须品或一般消费品,经济成长状况所产生的影响应作不同的评估. 5、法规变化 (1)企业活动的法规是否完备; (2)法规是否会经常变动,对企业经营产生的不利影响. 6、人力资源 (1)可预见的人力资源是否会缺乏; (2)基层人力与中高层人力资源可能的变化预测. 7、政治、社会 (1)可预见的政治是否稳定; (2)政治的变化对社会的影响度; (3)社会的变化对企业可能产生的影响. (二)、企业内部环境分析 内部环境分析主要检视企业目前的市场及未来市场之优势及缺点,从而评估企业自身现在具有或应尽快弥补之条件. 1、企业机能:研发能力、人力资源运用及发展能力、财务规划控制能力、生产力、行销能力. 2、管理机能:计划能力、组织能力、训练能力、领导能力、控制能力. (三)、企业运行指标分析 1、收益能力:投资回报率、销售利润率. 2、安定能力:自有资本比率、流动比率、资金周转运动比率. 3、活动能力:总资产周转率、流动资产周转率、存货周转率. 4、生产能力:作业生产能力、营销能力. 5、成长能力:营业收入成长能力;、产品附加值成长能力、企业人均产值成长能力. 6、研究发展能力:与市场衔接的能力、技术改进及储存能力. 7、社会责任;企业投入公益事业的能力

swot分析方法是什么

swot分析方法是一种综合考虑企业内部条件和外部环境的各种因素,进行系统评价,从而选择最佳经营战略的方法。s是指企业内部的优势,w是指企业内部的劣势,o是指企业外部环境中的机会,t是指企业外部环境中的威胁。因此,swot分析实际上是将对企业内外部条件各方面内容进行综合和概括,分析企业的优劣势、面临的机会和威胁,进而帮助企业进行战略选择的一种方法。优势,是组织机构的内部因素,具体包括:有利的竞争态势;充足的财政来源;良好的企业形象;技术力量;规模经济;产品质量;市场份额;成本优势;广告攻势等。劣势,也是组织机构的内部因素,具体包括:设备老化;管理混乱;缺少关键技术;研究开发落后;资金短缺;经营不善;产品积压;竞争力差等。机会,是组织机构的外部因素,具体包括:新产品;新市场;新需求;外国市场壁垒解除;竞争对手失误等。威胁,也是组织机构的外部因素,具体包括:新的竞争对手;替代产品增多;市场紧缩;行业政策变化;经济衰退;客户偏好改变;突发事件等。通过swot分析,可以帮助企业把资源和行动聚集在自己的强项和有最多机会的地方,并让企业的战略变得更加明朗。优势和劣势分析主要是着眼于企业自身的实力及其与竞争对手的比较,而机会和威胁分析则将注意力放在外部环境的变化及对企业的可能影响上。

什么是swot分析方法?其目的是什么?

产品的有劣势分析

swot分析方法包括哪些

swot分析方法是一种综合考虑企业内部条件和外部环境的各种因素,进行系统评价,从而选择最佳经营战略的方法。s是指企业内部的优势,w是指企业内部的劣势,o是指企业外部环境中的机会,t是指企业外部环境中的威胁。因此,swot分析实际上是将对企业内外部条件各方面内容进行综合和概括,分析企业的优劣势、面临的机会和威胁,进而帮助企业进行战略选择的一种方法。优势,是组织机构的内部因素,具体包括:有利的竞争态势;充足的财政来源;良好的企业形象;技术力量;规模经济;产品质量;市场份额;成本优势;广告攻势等。劣势,也是组织机构的内部因素,具体包括:设备老化;管理混乱;缺少关键技术;研究开发落后;资金短缺;经营不善;产品积压;竞争力差等。机会,是组织机构的外部因素,具体包括:新产品;新市场;新需求;外国市场壁垒解除;竞争对手失误等。威胁,也是组织机构的外部因素,具体包括:新的竞争对手;替代产品增多;市场紧缩;行业政策变化;经济衰退;客户偏好改变;突发事件等。通过swot分析,可以帮助企业把资源和行动聚集在自己的强项和有最多机会的地方,并让企业的战略变得更加明朗。优势和劣势分析主要是着眼于企业自身的实力及其与竞争对手的比较,而机会和威胁分析则将注意力放在外部环境的变化及对企业的可能影响上。

swot分析方法是什么?

swot分析方法是一种企业内部分析方法,即根据企业自身的既定内在条件进行分析,找出企业的优势、劣势及核心竞争力之所在,从而将公司的战略与公司内部资源、外部环境有机结合。其中,s代表strength(优势),w代表weakness(弱势),o代表opportunity(机会),t代表threat(威胁),其中,s、w是内部因素,o、t是外部因素。按照企业竞争战略的完整概念,战略应是一个企业“能够做的”(即组织的强项和弱项)和“可能做的”(即环境的机会和威胁)之间的有机组合。扩展资料:SWOT分析模型的方法:1、杠杆效应(优势+机会)。杠杆效应产生于内部优势与外部机会相互一致和适应时。在这种情形下,企业可以用自身内部优势撬起外部机会,使机会与优势充分结合发挥出来。然而,机会往往是稍瞬即逝的,因此企业必须敏锐地捕捉机会,把握时机,以寻求更大的发展。2、抑制性(机会+劣势)。抑制性意味着妨碍、阻止、影响与控制。当环境提供的机会与企业内部资源优势不相适合,或者不能相互重叠时,企业的优势再大也将得不到发挥。在这种情形下,企业就需要提供和追加某种资源,以促进内部资源劣势向优势方面转化,从而迎合或适应外部机会。3、脆弱性(优势+威胁)。脆弱性意味着优势的程度或强度的降低、减少。当环境状况对公司优势构成威胁时,优势得不到充分发挥,出现优势不优的脆弱局面。在这种情形下,企业必须克服威胁,以发挥优势。4、问题性(劣势+威胁)。当企业内部劣势与企业外部威胁相遇时,企业就面临着严峻挑战,如果处理不当,可能直接威胁到企业的生死存亡。参考资料:百度百科 SWOT分析法

SWOT分析方法是什么?

SWOT分析法(SWOT Analysis,又称强弱危机分析、优劣分析法等)是一种企业竞争态势分析方法,是市场营销的基础分析方法之一,通过评价自身的优势(Strengths)、劣势(Weaknesses)、外部竞争上的机会(Opportunities)和威胁(Threats),用以在制定发展战略前对自身进行深入全面的分析以及竞争优势的定位。S (strengths)是优势、W (weaknesses)是劣势,O (opportunities)是机会、T (threats)是威胁。按照企业竞争战略的完整概念,战略应是一个企业“能够做的”(即组织的强项和弱项)和“可能做的”(即环境的机会和威胁)之间的有机组合。因此,要结合自己的英语能力与四级试卷综合分析,做出表格,然后再分析就行。从整体上看,SWOT可以分为两部分:第一部分为SW,主要用来分析内部条件;第二部分为OT,主要用来分析外部条件。利用这种方法可以从中找出对自己有利的、值得发扬的因素,以及对自己不利的、要避开的东西,发现存在的问题,找出解决办法,并明确以后的发展方向。根据这个分析,可以将问题按轻重缓急分类,明确哪些是急需解决的问题,哪些是可以稍微拖后一点儿的事情,哪些属于战略目标上的障碍,哪些属于战术上的问题,并将这些研究对象列举出来,依照矩阵形式排列,然后用系统分析的所想,把各种因素相互匹配起来加以分析,从中得出一系列相应的结论而结论通常带有一定的决策性。

SPSS多元统计分析方法及应用的内容简介

《SPSS多元统计分析方法及应用》在阐述了SPSS基本功能的基础上,着重对多元统计分析的各个方法,针对目前部分统计教材以及SPSS丛书存在的问题,以数据分析应用需求为主线,对假设检验、方差分析、非参数检验、回归分析、聚类分析、判别分析、主成分分析、因子分析、对应分析、时间序列分析、信度分析、联合分析、生存分析、神经网络分析和结构方程模型15类方法,按照实际数据分析步骤从基本原理到软件操作进行了深入浅出的论述。本书基于SPSS17.0版本,并在SPSS17.0软件操作后附以独立案例进行分析。本书以自然科学和社会科学各领域研究人员为主要对象,同时也可供相关专业本科生、研究生、专业统计分析人员以及管理决策者进行学习或参考。

请问谁有关于统计的论文,具体要求是使用多元统计分析方法分析数据,还有如下:

1. 因子分析模型 因子分析法是从研究变量内部相关的依赖关系出发,把一些具有错综复杂关系的变量归结为少数几个综合因子的一种多变量统计分析方法。它的基本思想是将观测变量进行分类,将相关性较高,即联系比较紧密的分在同一类中,而不同类变量之间的相关性则较低,那么每一类变量实际上就代表了一个基本结构,即公共因子。对于所研究的问题就是试图用最少个数的不可测的所谓公共因子的线性函数与特殊因子之和来描述原来观测的每一分量。 因子分析的基本思想: 把每个研究变量分解为几个影响因素变量,将每个原始变量分解成两部分因素,一部分是由所有变量共同具有的少数几个公共因子组成的,另一部分是每个变量独自具有的因素,即特殊因子因子分析模型描述如下: (1)X = (x1,x2,…,xp)¢是可观测随机向量,均值向量E(X)=0,协方差阵Cov(X)=∑,且协方差阵∑与相关矩阵R相等(只要将变量标准化即可实现)。 (2)F = (F1,F2,…,Fm)¢ (m<p)是不可测的向量,其均值向量E(F)=0,协方差矩阵Cov(F) =I,即向量的各分量是相互独立的。 (3)e = (e1,e2,…,ep)¢与F相互独立,且E(e)=0, e的协方差阵∑是对角阵,即各分量e之间是相互独立的,则模型: x1 = a11F1+ a12F2 +…+a1mFm + e1 x2 = a21F1+a22F2 +…+a2mFm + e2 ……… xp = ap1F1+ ap2F2 +…+apmFm + ep 称为因子分析模型,由于该模型是针对变量进行的,各因子又是正交的,所以也称为R型正交因子模型。 其矩阵形式为: x =AF + e . 其中: x=,A=,F=,e= 这里, (1)m £ p; (2)Cov(F,e)=0,即F和e是不相关的; (3)D(F) = Im ,即F1,F2,…,Fm不相关且方差均为1; D(e)=,即e1,e2,…,ep不相关,且方差不同。 我们把F称为X的公共因子或潜因子,矩阵A称为因子载荷矩阵,e 称为X的特殊因子。 A = (aij),aij为因子载荷。数学上可以证明,因子载荷aij就是第i变量与第j因子的相关系数,反映了第i变量在第j因子上的重要性。 2. 模型的统计意义 模型中F1,F2,…,Fm叫做主因子或公共因子,它们是在各个原观测变量的表达式中都共同出现的因子,是相互独立的不可观测的理论变量。公共因子的含义,必须结合具体问题的实际意义而定。e1,e2,…,ep叫做特殊因子,是向量x的分量xi(i=1,2,…,p)所特有的因子,各特殊因子之间以及特殊因子与所有公共因子之间都是相互独立的。模型中载荷矩阵A中的元素(aij)是为因子载荷。因子载荷aij是xi与Fj的协方差,也是xi与Fj的相关系数,它表示xi依赖Fj的程度。可将aij看作第i个变量在第j公共因子上的权,aij的绝对值越大(|aij|£1),表明xi与Fj的相依程度越大,或称公共因子Fj对于xi的载荷量越大。为了得到因子分析结果的经济解释,因子载荷矩阵A中有两个统计量十分重要,即变量共同度和公共因子的方差贡献。 因子载荷矩阵A中第i行元素之平方和记为hi2,称为变量xi的共同度。它是全部公共因子对xi的方差所做出的贡献,反映了全部公共因子对变量xi的影响。hi2大表明x的第i个分量xi对于F的每一分量F1,F2,…,Fm的共同依赖程度大。 将因子载荷矩阵A的第j列( j =1,2,…,m)的各元素的平方和记为gj2,称为公共因子Fj对x的方差贡献。gj2就表示第j个公共因子Fj对于x的每一分量xi(i= 1,2,…,p)所提供方差的总和,它是衡量公共因子相对重要性的指标。gj2越大,表明公共因子Fj对x的贡献越大,或者说对x的影响和作用就越大。如果将因子载荷矩阵A的所有gj2 ( j =1,2,…,m)都计算出来,使其按照大小排序,就可以依此提炼出最有影响力的公共因子。 3. 因子旋转 建立因子分析模型的目的不仅是找出主因子,更重要的是知道每个主因子的意义,以便对实际问题进行分析。如果求出主因子解后,各个主因子的典型代表变量不很突出,还需要进行因子旋转,通过适当的旋转得到比较满意的主因子。 旋转的方法有很多,正交旋转(orthogonal rotation)和斜交旋转(oblique rotation)是因子旋转的两类方法。最常用的方法是最大方差正交旋转法(Varimax)。进行因子旋转,就是要使因子载荷矩阵中因子载荷的平方值向0和1两个方向分化,使大的载荷更大,小的载荷更小。因子旋转过程中,如果因子对应轴相互正交,则称为正交旋转;如果因子对应轴相互间不是正交的,则称为斜交旋转。常用的斜交旋转方法有Promax法等。 4.因子得分 因子分析模型建立后,还有一个重要的作用是应用因子分析模型去评价每个样品在整个模型中的地位,即进行综合评价。例如地区经济发展的因子分析模型建立后,我们希望知道每个地区经济发展的情况,把区域经济划分归类,哪些地区发展较快,哪些中等发达,哪些较慢等。这时需要将公共因子用变量的线性组合来表示,也即由地区经济的各项指标值来估计它的因子得分。 设公共因子F由变量x表示的线性组合为: Fj = uj1 xj1+ uj2 xj2+…+ujpxjp j=1,2,…,m 该式称为因子得分函数,由它来计算每个样品的公共因子得分。若取m=2,则将每个样品的p个变量代入上式即可算出每个样品的因子得分F1和F2,并将其在平面上做因子得分散点图,进而对样品进行分类或对原始数据进行更深入的研究。 但因子得分函数中方程的个数m小于变量的个数p,所以并不能精确计算出因子得分,只能对因子得分进行估计。估计因子得分的方法较多,常用的有回归估计法,Bartlett估计法,Thomson估计法。 (1)回归估计法 F = X b = X (X ¢X)-1A¢ = XR-1A¢ (这里R为相关阵,且R = X ¢X )。 (2)Bartlett估计法 Bartlett估计因子得分可由最小二乘法或极大似然法导出。 F = [(W-1/2A)¢ W-1/2A]-1(W-1/2A)¢ W-1/2X = (A¢W-1A)-1A¢W-1X (3)Thomson估计法 在回归估计法中,实际上是忽略特殊因子的作用,取R = X ¢X,若考虑特殊因子的作用,此时R = X ¢X+W,于是有: F = XR-1A¢ = X (X ¢X+W)-1A¢ 这就是Thomson估计的因子得分,使用矩阵求逆算法(参考线性代数文献)可以将其转换为: F = XR-1A¢ = X (I+A¢W-1A)-1W-1A¢ 5. 因子分析的步骤 因子分析的核心问题有两个:一是如何构造因子变量;二是如何对因子变量进行命名解释。因此,因子分析的基本步骤和解决思路就是围绕这两个核心问题展开的。 (i)因子分析常常有以下四个基本步骤: (1)确认待分析的原变量是否适合作因子分析。 (2)构造因子变量。 (3)利用旋转方法使因子变量更具有可解释性。 (4)计算因子变量得分。 (ii)因子分析的计算过程: (1)将原始数据标准化,以消除变量间在数量级和量纲上的不同。 (2)求标准化数据的相关矩阵; (3)求相关矩阵的特征值和特征向量; (4)计算方差贡献率与累积方差贡献率; (5)确定因子: 设F1,F2,…, Fp为p个因子,其中前m个因子包含的数据信息总量(即其累积贡献率)不低于80%时,可取前m个因子来反映原评价指标; (6)因子旋转: 若所得的m个因子无法确定或其实际意义不是很明显,这时需将因子进行旋转以获得较为明显的实际含义。 (7)用原指标的线性组合来求各因子得分: 采用回归估计法,Bartlett估计法或Thomson估计法计算因子得分。 (8)综合得分 以各因子的方差贡献率为权,由各因子的线性组合得到综合评价指标函数。 F = (w1F1+w2F2+…+wmFm)/(w1+w2+…+wm ) 此处wi为旋转前或旋转后因子的方差贡献率。 (9)得分排序:利用综合得分可以得到得分名次。 在采用多元统计分析技术进行数据处理、建立宏观或微观系统模型时,需要研究以下几个方面的问题: · 简化系统结构,探讨系统内核。可采用主成分分析、因子分析、对应分析等方法,在众多因素中找出各个变量最佳的子集合,从子集合所包含的信息描述多变量的系统结果及各个因子对系统的影响。“从树木看森林”,抓住主要矛盾,把握主要矛盾的主要方面,舍弃次要因素,以简化系统的结构,认识系统的内核。 · 构造预测模型,进行预报控制。在自然和社会科学领域的科研与生产中,探索多变量系统运动的客观规律及其与外部环境的关系,进行预测预报,以实现对系统的最优控制,是应用多元统计分析技术的主要目的。在多元分析中,用于预报控制的模型有两大类。一类是预测预报模型,通常采用多元线性回归或逐步回归分析、判别分析、双重筛选逐步回归分析等建模技术。另一类是描述性模型,通常采用聚类分析的建模技术。 · 进行数值分类,构造分类模式。在多变量系统的分析中,往往需要将系统性质相似的事物或现象归为一类。以便找出它们之间的联系和内在规律性。过去许多研究多是按单因素进行定性处理,以致处理结果反映不出系统的总的特征。进行数值分类,构造分类模式一般采用聚类分析和判别分析技术。 如何选择适当的方法来解决实际问题,需要对问题进行综合考虑。对一个问题可以综合运用多种统计方法进行分析。例如一个预报模型的建立,可先根据有关生物学、生态学原理,确定理论模型和试验设计;根据试验结果,收集试验资料;对资料进行初步提炼;然后应用统计分析方法(如相关分析、逐步回归分析、主成分分析等)研究各个变量之间的相关性,选择最佳的变量子集合;在此基础上构造预报模型,最后对模型进行诊断和优化处理,并应用于生产实际。 Rotated Component Matrix,就是经转轴后的因子负荷矩阵, 当你设置了因子转轴后,便会产生这结果。 转轴的是要得到清晰的负荷形式,以便研究者进行因子解释及命名。 SPSS的Factor Analysis对话框中,有个Rotation钮,点击便会弹出Rotation对话框, 其中有5种因子旋转方法可选择: 1.最大变异法(Varimax):使负荷量的变异数在因子内最大,亦即,使每个因子上具有最高载荷的变量数最少。 2.四次方最大值法(Quartimax):使负荷量的变异数在变项内最大,亦即,使每个变量中需要解释的因子数最少。 3.相等最大值法(Equamax):综合前两者,使负荷量的变异数在因素内与变项内同时最大。 4.直接斜交转轴法(Direct Oblimin):使因素负荷量的差积(cross-products)最小化。 5.Promax 转轴法:将直交转轴(varimax)的结果再进行有相关的斜交转轴。因子负荷量取2,4,6次方以产生接近0但不为0的值,藉以找出因子间的相关,但仍保有最简化因素的特性。 上述前三者属於「直交(正交)转轴法」(Orthogonal Rotations),在直交转轴法中,因子与因子之间没有相关,因子轴之间的夹角等於90 ufa01。后两者属於「斜交转轴」(oblique rotations),表示因子与因子之间彼此有某种程ufa01的相关,因素轴之间的夹角uf967是90ufa01。 直交转轴法的优点是因子之间提供的讯息uf967会重叠,受访者在某一个因子的分uf969与在其他因子的分uf969,彼此独uf9f7互uf967相关;缺点是研究迫使因素之间uf967相关,但这种情况在实际的情境中往往并不常存在。至於使用何种转轴方式,须视乎研究题材、研究目的及相关理论,由研究者自行设定。 在根据结果解释因子时,除了要看因子负荷矩阵中,因子对哪些变量呈高负荷,对哪些变量呈低负荷,还须留意之前所用的转轴法代表的意义。2,主成分分析(principal component analysis) 将多个变量通过线性变换以选出较少个数重要变量的一种多元统计分析方法。又称主分量分析。在实际课题中,为了全面分析问题,往往提出很多与此有关的变量(或因素),因为每个变量都在不同程度上反映这个课题的某些信息。但是,在用统计分析方法研究这个多变量的课题时,变量个数太多就会增加课题的复杂性。人们自然希望变量个数较少而得到的信息较多。在很多情形,变量之间是有一定的相关关系的,当两个变量之间有一定相关关系时,可以解释为这两个变量反映此课题的信息有一定的重叠。主成分分析是对于原先提出的所有变量,建立尽可能少的新变量,使得这些新变量是两两不相关的,而且这些新变量在反映课题的信息方面尽可能保持原有的信息。主成分分析首先是由K.皮尔森对非随机变量引入的,尔后H.霍特林将此方法推广到随机向量的情形。信息的大小通常用离差平方和或方差来衡量。 (1)主成分分析的原理及基本思想。原理:设法将原来变量重新组合成一组新的互相无关的几个综合变量,同时根据实际需要从中可以取出几个较少的总和变量尽可能多地反映原来变量的信息的统计方法叫做主成分分析或称主分量分析,也是数学上处理降维的一种方法。基本思想:主成分分析是设法将原来众多具有一定相关性(比如P个指标),重新组合成一组新的互相无关的综合指标来代替原来的指标。通常数学上的处理就是将原来P个指标作线性组合,作为新的综合指标。最经典的做法就是用F1(选取的第一个线性组合,即第一个综合指标)的方差来表达,即Var(F1)越大,表示F1包含的信息越多。因此在所有的线性组合中选取的F1应该是方差最大的,故称F1为第一主成分。如果第一主成分不足以代表原来P个指标的信息,再考虑选取F2即选第二个线性组合,为了有效地反映原来信息,F1已有的信息就不需要再出现再F2中,用数学语言表达就是要求Cov(F1, F2)=0,则称F2为第二主成分,依此类推可以构造出第三、第四,……,第P个主成分。(2)步骤Fp=a1mZX1+a2mZX2+……+apmZXp 其中a1i, a2i, ……,api(i=1,……,m)为X的协方差阵∑的特征值多对应的特征向量,ZX1, ZX2, ……, ZXp是原始变量经过标准化处理的值,因为在实际应用中,往往存在指标的量纲不同,所以在计算之前须先消除量纲的影响,而将原始数据标准化,本文所采用的数据就存在量纲影响[注:本文指的数据标准化是指Z标准化]。A=(aij)p×m=(a1,a2,…am,),Rai=λiai,R为相关系数矩阵,λi、ai是相应的特征值和单位特征向量,λ1≥λ2≥…≥λp≥0 。进行主成分分析主要步骤如下:1. 指标数据标准化(SPSS软件自动执行);2. 指标之间的相关性判定;3. 确定主成分个数m;4. 主成分Fi表达式;5. 主成分Fi命名;选用以上两种方法时的注意事项如下:1、因子分析中是把变量表示成各因子的线性组合,而主成分分析中则是把主成分表示成个变量的线性组合。 2、主成分分析的重点在于解释个变量的总方差,而因子分析则把重点放在解释各变量之间的协方差。 3、主成分分析中不需要有假设(assumptions),因子分析则需要一些假设。因子分析的假设包括:各个共同因子之间不相关,特殊因子(specific factor)之间也不相关,共同因子和特殊因子之间也不相关。 4、主成分分析中,当给定的协方差矩阵或者相关矩阵的特征值是唯一的时候,的主成分一般是独特的;而因子分析中因子不是独特的,可以旋转得到不同的因子。 5、在因子分析中,因子个数需要分析者指定(spss根据一定的条件自动设定,只要是特征值大于1的因子进入分析),而指定的因子数量不同而结果不同。在主成分分析中,成分的数量是一定的,一般有几个变量就有几个主成分。和主成分分析相比,由于因子分析可以使用旋转技术帮助解释因子,在解释方面更加有优势。大致说来,当需要寻找潜在的因子,并对这些因子进行解释的时候,更加倾向于使用因子分析,并且借助旋转技术帮助更好解释。而如果想把现有的变量变成少数几个新的变量(新的变量几乎带有原来所有变量的信息)来进入后续的分析,则可以使用主成分分析。当然,这中情况也可以使用因子得分做到。所以这中区分不是绝对的。 总得来说,主成分分析主要是作为一种探索性的技术,在分析者进行多元数据分析之前,用主成分分析来分析数据,让自己对数据有一个大致的了解是非常重要的。主成分分析一般很少单独使用:a,了解数据。(screening the data),b,和cluster analysis一起使用,c,和判别分析一起使用,比如当变量很多,个案数不多,直接使用判别分析可能无解,这时候可以使用主成份发对变量简化。(reduce dimensionality)d,在多元回归中,主成分分析可以帮助判断是否存在共线性(条件指数),还可以用来处理共线性。 在算法上,主成分分析和因子分析很类似,不过,在因子分析中所采用的协方差矩阵的对角元素不在是变量的方差,而是和变量对应的共同度(变量方差中被各因子所解释的部分)。 (1)了解如何通过SPSS因子分析得出主成分分析结果。首先,选择SPSS中Analyze-Data Reduction-Factor…,在Extraction…对话框中选择主成分方法提取因子,选择好因子提取个数标准后点确定完成因子分析。打开输出结果窗口后找到Total Variance Explained表和Component Matrix表。将Component Matrix表中第一列数据分别除以Total Variance Explained表中第一特征根值的开方得到第一主成分表达式系数,用类似方法得到其它主成分表达式。打开数据窗口,点击菜单项的Analyze-Descriptive Statistics-Descriptives…,在打开的新窗口下方构选Save standardized values as variables,选定左边要分析的变量。点击Options,只构选Means,点确定后既得待分析变量的标准化新变量。选择菜单项Transform-Compute…,在Target Variable中输入:Z1(主成分变量名,可以自己定义),在Numeric Expression中输入例如:0.412(刚才主成分表达式中的系数)*Z人口数(标准化过的新变量名)+0.212*Z第一产业产值+…,点确定即得到主成分得分。通过对主成分得分的排序即可进行各个个案的综合评价。很显然,这里的过程分为四个步骤:Ⅰ.选主成分方法提取因子进行因子分析。Ⅱ.计算主成分表达式系数。Ⅲ.标准化数据。Ⅳ.计算主成分得分。 我们的程序也将依该思路展开开发。(2)对为何要将Component Matrix表数据除以特征根开方的解释我们学过主成分分析和因子分析后不难发现,原来因子分析时的因子载荷矩阵就是主成分分析特征向量矩阵乘以对应特征根开方值的对角阵。而Component Matrix表输出的恰是因子载荷矩阵,所以求主成分特征向量自然是上面描述的逆运算。 成功启动程序后选定分析变量和主成分提取方法即可在数据窗口输出得分和在OUTPUT窗口输出主成分表达式。3,聚类分析(Cluster Analysis) 聚类分析是直接比较各事物之间的性质,将性质相近的归为一类,将性质差别较大的归入不同的类的分析技术 。 在市场研究领域,聚类分析主要应用方面是帮助我们寻找目标消费群体,运用这项研究技术,我们可以划分出产品的细分市场,并且可以描述出各细分市场的人群特征,以便于客户可以有针对性的对目标消费群体施加影响,合理地开展工作。 4.判别分析(Discriminatory Analysis) 判别分析(Discriminatory Analysis)的任务是根据已掌握的1批分类明确的样品,建立较好的判别函数,使产生错判的事例最少,进而对给定的1个新样品,判断它来自哪个总体。根据资料的性质,分为定性资料的判别分析和定量资料的判别分析;采用不同的判别准则,又有费歇、贝叶斯、距离等判别方法。 费歇(FISHER)判别思想是投影,使多维问题简化为一维问题来处理。选择一个适当的投影轴,使所有的样品点都投影到这个轴上得到一个投影值。对这个投影轴的方向的要求是:使每一类内的投影值所形成的类内离差尽可能小,而不同类间的投影值所形成的类间离差尽可能大。贝叶斯(BAYES)判别思想是根据先验概率求出后验概率,并依据后验概率分布作出统计推断。所谓先验概率,就是用概率来描述人们事先对所研究的对象的认识的程度;所谓后验概率,就是根据具体资料、先验概率、特定的判别规则所计算出来的概率。它是对先验概率修正后的结果。 距离判别思想是根据各样品与各母体之间的距离远近作出判别。即根据资料建立关于各母体的距离判别函数式,将各样品数据逐一代入计算,得出各样品与各母体之间的距离值,判样品属于距离值最小的那个母体。 5.对应分析(Correspondence Analysis) 对应分析是一种用来研究变量与变量之间联系紧密程度的研究技术。 运用这种研究技术,我们可以获取有关消费者对产品品牌定位方面的图形,从而帮助您及时调整营销策略,以便使产品品牌在消费者中能树立起正确的形象。 这种研究技术还可以用于检验广告或市场推广活动的效果,我们可以通过对比广告播出前或市场推广活动前与广告播出后或市场推广活动后消费者对产品的不同认知图来看出广告或市场推广活动是否成功的向消费者传达了需要传达的信息。

多元统计分析方法的作用是什么

多元统计分析方法的作用使实际工作者利用多元统计分析方法解决实际问题更简单方便。如果每个个体有多个观测数据,或者从数学上说,如果个体的观测数据能表为P维欧几里得空间的点,那么这样的数据叫做多元数据,而分析多元数据的统计方法就叫做多元统计分析,它是数理统计学中的一个重要的分支学科。典型相关分析它是寻求两组变量各自的线性函数中相关系数达到最大值的一对,这称为第一对典型变量,还可以求第二对,第三对,等等,这些成对的变量,彼此是不相关的。各对的相关系数称为典型相关系数。通过这些典型变量所代表的实际含意,可以找到这两组变量间的一些内在联系。典型相关分析虽然30年代已经出现,但至今未能广泛应用。