高考数学重难点

2023-11-21 17:16:12
TAG: 数学
共5条回复
gitcloud

高中数学合集百度网盘下载

链接:https://pan.baidu.com/s/1znmI8mJTas01m1m03zCRfQ

?pwd=1234

提取码:1234

简介:高中数学优质资料下载,包括:试题试卷、课件、教材、视频、各大名师网校合集。

杨氏不等式

大鱼炖火锅

高考数学重点每年会做细微调节,但基本重点的调节不大,以下是2010年的高考数学大纲。

一、2010年高考数学考查的重点:

根据《2010高考数学考试大纲》,重点考察函数、数列、三角函数、平面向量、不等式、立体几何、解析几何、概率统计、导数九大章节。作为高考来讲重点考查下面几个版块:

(1)函数与导数:在这个版块重点考查,二次函数,高次函数,分式函数和复合函数的单调性和最值,考生尤其要重视分式函数和指对复合函数的单调性和值域的求解方法。同时考生应重视函数与数列、函数与不等式的结合,灵活掌握处理这类综合题的方法和技巧,抓住典型例题,以不变应万变。

(2)平面向量与三角函数:在这个版块里,将向量作为一种工具放在三角函数里考,重点考查三方面:①三角的化简与求值,考查化简与求值,重点考察的是五组三角公式,包括同角基本公式,诱导公式,倍半公式,和差公式和辅助角公式②图象和性质:在这里重点考查的是正弦函数和余弦函数的图象和性质,掌握正弦和余弦函数的性质应该从以下的7个方面去掌握:定义域,值域,单调性,奇偶性,图象,周期性和对称性,特别是正弦和余弦函数的性质是高考重点中的重点,应特别关注。③三角恒等变形,这部分重点考察的还是一些基本公式的应用,提醒各位考生应加强对基本公式的理解和记忆。

(3)数列:在这个版块里重点考查的是数列的通项与求和,在这里面我们重点掌握几种常见求通项的方法,包括公式法,待定系数法等等,在求和里面我们重点掌握几种常见求和的方法,包括利用公式法,裂项相加法,错位相减法等等,在这里要强调的是要掌握每一种方法所适应于哪一类的数列。一般来讲在高考中通项是重点也是难点,特别是项与项之间的递推公式应重点掌握。对于数列的求和特别应该重视等比数列求和公式中公比的限制性条件,这是高考的一个易错点,应重点关注!

(4)空间向量和立体几何:2010新课标高考对这个版块的要求降低。特别是对文科同学来说,对于角度和距离的计算仅限于线线角和点面距离、几何体的表面积和体积。在证明中以线面平行,线面垂直的证明为主。对于理科同学来讲,在这里我建议大家要掌握利用空间向量俩来解决立体几何中的证明和计算问题。特别强调的是利用空间向量求解的时候必须准确记忆角度和距离的计算公式,然后理解公式中各字母的含义,按照公式去找条件即可。对于这部分考生除对传统的证明和计算重点掌握之外还应加强对立体几何中的翻转问题、动点问题训练,以从容应对高考中的新题、难题。

(5)概率和统计:高中阶段重点掌握古典概型、几何概型和随机变量三类基本模型。这部分在高考中是以应用题的形式出现,在这里我要强调的是概率这道题在高考中难度往往较小,考生只需要认真读题,读懂题意,分清类型就可以解答出来了。对于2010年高考来说考生应重视统计这一部分的学习,特别是线性回归、统计方法等考生应准确理解基本概念并会简单应用。

(6)解析几何:这个版块我总结了在高考中常考的五种模型:第一类:直线和曲线的位置关系及向量的计算,这类题目是高考最常见的一类问题,考生应掌握它的通法。第二类:动点问题(消参法),在这里需要强调的是要注意动点所满足的范围限制。第三类:弦长问题(公式法),在这里考生只需要会利用弦长公式就可以了;第四类:对称问题(代换法),即找中点来代换;第五类:中点问题(点差法)。解析几何的这道题目往往是整个试卷中计算量最大的一道题目了,很多同学会做但不会算,这种情况在高考中是很常见的,这就需要我们在平时训练的时候要善始善终,每做一道题就坚持把它算完,长期坚持养成好习惯,运算能力自然就会提高。这五类模型考生都应该重点掌握,高考中尽管解析的难度较大,但万变不离其宗,只要基本模型熟练掌握,应对这道大题还是绰绰有余的。

(7)数列,函数与不等式:这个版块往往考的是压轴题,以不等式的证明为主,难度往往很大,考生在复习备考中应重点积累一些不等式的证明方法,包括放缩法,数学归纳法等等。虽然难度较大,我建议考生采取分步得分,不留空白。对于这部分的复习我建议可以放在后期,5月份之后可以适当看看已经考过的压轴题,开阔思路,对于大部分考生不作重点要求。

二、最后四个月应该注意的问题:

现在距离2010年高考还有四个多月的时间,这是考生综合素质提高的黄金时间,这段时间,也称为全面复习阶段,同学们需要把前面一些零散的知识点系统化、条理化、模块化,找到学科中的宏观线索,提纲挚领,全面到位。下面我根据以往的高考数学复习的经验,结合优秀考生的学习体会,谈谈这最后四个月的复习建议。

(一)、全面落实双基,保证驾轻就熟

目前高考数学试卷,基础知识和基本方法的考查占80%左右的份量,即使是创新题或能力题也是建立在双基之上,只有脚踏实地、一丝不苟地巩固双基,才能突破难题,战胜新题。在这里我要强调的是教材是精品,只有把握了教材,也就切中了要害。不仅要深刻理解教材中的知识,更重要的是要关注教材中解决问题的思想方法,还要全面把握知识体系,做到不掌握不放过。对照《考试说明》,确定考试范围,认真阅读和理解教材中相关内容,包括每个概念、每个例题、每个注释、每个图形,准确理解和记忆知识点,不留空白和隐患。最后复习阶段不防从课本的目录入手,进行串联,形成体系。同时要配以适量的练习,练习中遇到困难也在所难免,必须找到问题的症结在那里,对照教材,彻底扫除障碍。回归教材、吃透课本,千万不能眼高手。,对于教材的复习,建议可以重点看看概率和统计、数列、函数、导数、圆锥曲线这几章的例题。

(二)、重视错题病例,实时亡羊补牢

错题病例也是财富,它有时暴露我们的知识缺陷,有时暴露我们的思维不足,有时暴露我们方法的不当,毛病暴露出来了,也就有治疗的方向,提供了纠错的机会,因此我建议在后期冲刺的阶段我们一定要建立错题库,特别是那些概念理解不深刻、知识记忆失误、思维不够严谨、方法使用不当等典型错误收集成册,并加以评注,指出错误原因,经常翻阅,常常提醒,警钟长鸣。

(三)、抓住典型例题,争取融会贯通

现在离高考已不远了,时间非常紧张,因此在最后的复习阶段考生应该抓住宝贵的时间,在最短时间内最大程度提高学习效率,那我们就不能做大量重复的无用功,因此我们要学会选题,那就需要我们抓住一些典型问题,借题发挥,充分挖掘。具体的就是解题后反思。反思题意,总结解此类题目的方法和技巧,同时我们还要学会典型问题的引申变化,促进知识的串联和方法的升华。那么到底什么是典型例题呢?那就是高考真题,特别是近三年以来高考真题中的解答题(重点做前5道)

(四)、精读考试大纲,确保了如指掌

《考试说明》是高考命题的依据,〈大纲〉明确告诉我们高考考什么、考多难、怎样考这三个问题。考生一定要明确考试的知识要求。针对教材与复习时的笔记逐一对照,看是否得到了落实,确保没有遗漏,对于那些没有没达要求的决不罢手。特别是大纲中调整的内容,比如2010新课标高考新增三视图,程序与框图、极坐标、几何概型、微积分等必须高度重视,明确要求,提高复习的针对性和实效性。另外,对试卷的形式,题型、考试时间、分值等等也应一清二楚。

(五)、加强毅力训练,做到持之以恒

最后的四个月是高考冲刺最关键的时候,很多考生身心俱疲,那就看谁能坚持到最后谁就能取得胜利。最后的阶段,我们同样每天要有明确的学习计划,并坚决执行,不寻找借口。任何一门学科,只要三天不接触,拿到题目时,将会觉得入手不顺,思维不畅,效率不高且容易出错,若5天不训练将会不进而退。所以,建议各个学科每天都要有所巩固,遇到困难应及时解决,不能积累,否则会打击信心,丧失斗志,要想高考成功,即要有热情更要有毅力!

兔狮喵

知识点考察角度与重点内容知识点考察角度与重点内容知识点考察角度与重点内容知识点考察角度与重点内容:::: 1、集合 注意交集、并集、补集运算的理解,细节上注意区间端点问题的取舍。 2、简易逻辑 特称、全称、且、或的相关否定及命题判断,重点考察与立体几何、三角函数等命题的融合。 3、函数 3年来只出过两道单纯考察函数的小题,高考更注重考生对函数思想的理解。注意奇偶性与单调性的简单应用、数形结合。 4、导数的应用 已知切点与未知切点,求切线方程的两类题型,高考考察点更趋向函数解析式的求导运算,出现了求导解析式运算量加大的趋向,学生应注意熟练分式求导及不特殊的对数、指数求导公式。 函数与导数大题的常见题型:第一问注意三种基本问题;第二问注意高等数学、竞赛数学为背景的不等量问题的证明。例如函数零点与相应导函数零点之间的关系、琴生不等式、杨氏不等式的证明。解答押轴一问时应考虑到必会应用第一问的结论或处理第一问时用到的方法,可按此思路寻找解题策略。 5、数列 等差等比基本公式,尤其注意等比中q为1的讨论,注意下角标性质、片段和性质以及列项求和,要求复杂数列递推的题型。适当注意等比中项的充分性以及和均值不等式的综合。 6、三角函数 必考内容,常见题型为三角函数相关的问题以及三角求值问题、最值问题。 7、向量 趋向向量的数形结合,注意向量的数量积运算,并且与圆锥曲线弦中点问题结合。 8、不等式 三种基本不等式融合于其它知识点出题、注意线性规划中目标函数为分式形式的问题。 9、几何证明选讲 未出过小题,主要在选作中考察,注意位置关系与垂径定理的应用 10、圆锥曲线 两小题一大题,小题注意抛物线的定义、焦半径、焦点弦、准线;双曲线的渐近线;相关性质如通径、焦点三角形面积等需要背。由于双曲线和椭圆的第二定义在新教材中被删除,所以涉及两种曲线的准线问题可以不用复习,但对第二定义的考察仍然在题目中,这也从侧面也更突出了唯一保留的抛物线涉及准线问题的地位,应重点注意抛物线涉及准线问题,包括最短距离问题、焦点弦问题等等。 大题常见题型:第一问注意求轨迹的三种题型。第二问注意椭圆中以向量为载体的动中有定问题;注意抛物线的求导切线问题。高考可能有淡化韦达定理的趋向可适当关注相应题目训练。 11、立体几何 两小题一大题,小题有一中档题和一难题,注意三视图表面积、运动下几何体相关量的变化范围问题、与球的相关组合体、体积分割问题;注意长方体载体的应用。 大题常见题型:注意训练开放性问题如已知二面角大小探求相应点位置以及建系的三种不同类型。 12、排列组合 一道小题,注意基本模型的掌握,不宜训练难题。 13、二项式定理 通常为选择填空题,且只有一题,主要是公式应用,适当注意最基本求解常数项等问题即可。 14、概率统计 以大题为主。以统计为背景的二项分布问题、注意训练从大量阅读信息中快速提取数据的能力,方差的概率公式要求记忆。 15、复数 基本运算,运算量逐年加大。 16、算法 注意程序语言;注意与列项求和、与统计过程、与实际测量为载体的解三角形以及与二分法的整合

北有云溪

姐姐告诉你,高中最重要的是基础,相信我,千万不要浪费过多的时间去搞一些奇形怪状的难题

阿啵呲嘚

我不知。但是我身边也有挺多例子:他们以前读书也很烂但是他们只在快高考三个月很努力很努力看书。还有多做题他们考上挺好的大学。我也正在准备高考,我成绩也很烂,所以我会晚上看到三点白天七点起来看会在做点事接着看。下午睡觉看电视和他们聊天。我觉得你也给自己定个好点计划。我也是在最后三个月左右看所以我不觉得我比别人差什么 所以你相信自己?

相关推荐

young不等式是什么?

young不等式也就是杨氏不等式。杨氏不等式又称Young不等式 ,Young不等式是加权算术-几何平均值不等式的一种特例,Young不等式也是证明Holder不等式的一个快捷方法。相关信息:杨氏不等式最大的贡献就在于其在Lu1d56空间中的运用,若是排除了这一块未免有点可惜。但考虑到学习的系统性,笔者认为在学《微积分学教程》时,就应该先专注于打好知识体系。Young不等式是加权算术-几何平均值不等式的特例,Young不等式是证明Holder不等式的一个快捷方法。
2023-11-19 16:30:501

怎样用杨氏不等式证明赫尔德不等式

杨氏不等式: 对正实数a,b,p,q,满足1/p+1/q=1,恒有ab≤1/p*a^p+1/q*b^q,等号成立当且仅当a^p=b^q Holder不等式证明如下: 令xi=ai/(a1^p+a2^p+...+an^p)^(1/p),yi=bi/(b1^q+b2^q+...+bn^q)^(1/q) ,i=1,2,...n,只需证明: x1y1+x2y2+...+xnyn≤1 而根据杨氏不等式 x1y1+x2y2+..+xnyn ≤1/p(x1^p+x2^p+...+xn^p)+1/q(y1^q+y2^q+...+yn^q) =1/p+1/q =1 这就完成了证明 顺便说明 等号成立当且仅当xi^p=yi^q,即 ai^p/(a1^p+a2^p+...+an^p)=bi^q/(b1^q+b2^q+...+bn^q) 即对任意i,j,i≠j,有 (ai/aj)^p=(bi/bj)^q 当p=q=2时立即得到我们熟知的Cauchy不等式的等号成立条件
2023-11-19 16:31:031

十大著名不等式

以下为十大著名不等式:1.柯西施瓦茨不等式柯西-施瓦茨不等式是解析几何中的重要问题之一,它关于内积空间中向量的长度的大小关系问题。不等式形式简明、应用广泛,是高中数学必修内容。2.马尔科夫不等式马尔科夫不等式,满足概率分布函数一般性正态性降低时的许多基本统计量不等式。它主要用于研究随机变量函数与期望之间的关系,是概率论中的一种基本不等式。3.切比雪夫不等式切比雪夫不等式是概率统计学中的一种基本不等式,它是衡量随机变量与其均值之间误差的上界不等式。这个不等式可以用来估计一个数据集的方差。4.霍尔德不等式霍尔德不等式是数学分析中的一种基本不等式,可以用来研究数列和函数的极限问题。不等式具有广泛的应用领域,广泛用于测量不同维度随机向量之间的距离。5.杨氏不等式杨氏不等式是初等代数学中的一种基本不等式,它主要用于证明不等式和解决相关问题。该不等式适用于概率论、数值计算、统计学和其他领域。6.门捷列夫不等式门捷列夫不等式是数学中的一种基本不等式,主要用于研究随机变量与其函数之间的关系。该不等式可以衡量随机变量与期望之间的偏差程度。7.均值不等式均值不等式是初等数学中的基本不等式,被广泛应用于数学分析、不等式证明、以及概率论和统计学等领域中。该不等式主要用于计算或估计函数值的范围。8.菲涅耳不等式菲涅耳不等式是解析几何中的一种基本不等式,提供了构建微积分中的有限不等式的基础。此外还可以解决分析几何或者向量和空间的问题。9.几何调和平均数不等式几何-调和平均数不等式是数学基础中的一种基本不等式,主要用于研究标量和向量的大小关系。该不等式比较简单,适用于高中数学学习。10.哈代克劳斯不等式哈代-克劳斯不等式是初等数学中的基本不等式之一,被广泛应用于数值计算、概率论、统计学和物理学等领域。该不等式可以衡量数据分布的不稳定程度。
2023-11-19 16:31:121

高等数学中有哪些重要不等式?

1、三角不等式三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子(这里不作介绍)。三角不等式虽然简单,但却是平面几何不等式里最为基础的结论。2、均值不等式均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。3、柯西不等式柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中非常重要,是高等数学研究内容之一。4、几何平均不等式根号ab,称为几何平均数,这个体现了一个几何关系, 即过一个圆的直径上任意一点做垂线,直径被分开的两部分为a,b, 那么那个垂线在圆内的一半长度就是根号ab,并且 (a+b)/2≥根号ab! 这就是它的几何意思,也是称之为几何平均数的原因。算术-几何平均值不等式,简称算几不等式,是一个常见而基本的不等式,表现了算术平均数和几何平均数之间恒定的不等关系。5、杨氏不等式杨氏不等式又称Young不等式 ,Young不等式是加权算术-几何平均值不等式的特例,Young不等式是证明Holder不等式的一个快捷方法。
2023-11-19 16:31:431

杨氏不等式的证明

1.若b =0,不等式显然成立。若b≠0, ,则该不等式变为设 , 时,f严格递增, 时,f严格递减,故f(t) f(1)=1-t,得证。 2.如果a>0且b>0,而数p,q满足:1/p+1/q=1,那么a^(1/p)*b^(1/q)≤(1/p)*a+(1/q)*b,当p>1a^(1/p)*b^(1/q)≥(1/p)*a+(1/q)*b,当p<1可以先证明:x>0时,x^α-αx+α-1≤0,当0<α<1时;x^α-αx+α-1≥0,当α>1时;f(x)=x^α-αx+α-1f"(x)=α[x^(α-1)-1],f"(1)=0当0<α<1时;当x∈(0,1);f"(x)>0;当x∈(1,+∞);f"(x)<0;∴f(x)在x=1处取最大值,又f(1)=0,∴f(x)≤0当α>1时,当x∈(0,1)时,f"(x)<0,当x∈(1,+∞)时,f"(x)>0,∴f(x)在x=1处取最小值,又f(1)=0,∴f(x)≥0代入,x=a/b,α=1/p,得f(a/b)=(a/b)^(1/p)-(1/p)*(a/b)+1/p-1当p>1时,即0<α<1:(a/b)^(1/p)-(1/p)*(a/b)+1/p-1≤0即(a/b)^(1/p)≤(1/p)*(a/b)+1/q同时乘以b,得:a^(1/p)*b^(1/q)≤(1/p)*a+(1/q)*b当p<1时,即α<0(p1(0<p<1)(a/b)^(1/p)-(1/p)*(a/b)+1/p-1≥0即(a/b)^(1/p)≥(1/p)*(a/b)+1/q同时乘以b,得:a^(1/p)*b^(1/q)≥(1/p)*a+(1/q)*b证明2:令f(a)=a^p/p+b^q/q-ab,f′(a)=a^(p-1)-b令f′(a)>0,分2种情况1、p>1,a>b^(1/(p-1))f(a)>=f(b^(1/(p-1)))=0即a^p/p+b^q/q>=ab2、0<p<1,a<=b^(1/(p-1))f(a)<=f(b^(1/(p-1)))=0即a^p/p+b^q/q<=ab证毕
2023-11-19 16:31:581

考研七个基本不等式是什么?

考研七个基本不等式包括三角不等式、平均值不等式(Hn≤Gn≤An≤Qn)、二元均值不等式(a^2+b^2≥2ab)、杨氏不等式、柯西不等式、赫尔德不等式等。不等式证明是考研数学考查的重点内容之一,证明方法包括用单调性证明不等式,用中值定理证明不等式,利用凹凸性证明不等式等。考研全流程注意事项1. 熟悉考研的流程,明确报考专业以及目标院校。在考研之前,大学生要先熟悉考研的流程。比如考研的报名资格,考试时间、考研院校的招生信息等。然后明确报考专业以及目标院校。报考专业可以跟大学专业一样,也可以跨专业考研。专业确定之后就是目标院校的选择了。2. 制定备考计划,合理安排复习时间。每个学生决定要考研的时间是不同的。有的学生大一就决定考研,有的学生大三还没想明白要不要考。不管什么时候做决定,决定之后,同学们一定要做一份对应的备考计划,合理安排复习时间,提高复习效率。3. 报名、认定不可错过。大学当中的研究生考试一般10月份在网上报名,11月份到现场认定,也就是拍照、核实信息等。对于这两个时间段,大学生要留意,不要错过报名跟认定时间,否则就得来年再战了。4. 研究生初试。研究生初试时间一般在12月底,初试考两科,每科考试持续3个小时。根据报考的专业不同,考试的科目也不同。有的专业需要考数学,有的专业只考政治、英语跟专业课。5. 研究生复试。初试通过之后,考生可参加研究生复试。研究生复试包括笔试跟面试。笔试主要考察专业课知识,复试考察英语口语与听力、专业课知识以及临场应变能力等。
2023-11-19 16:32:131

什么是Young不等式

Young不等式又称杨氏不等式 ,Young不等式是加权算术-几何平均值不等式的特例,Young不等式是证明Holder不等式的一个快捷方法。
2023-11-19 16:32:311

考研七个不等式有那几个?

考研七个基本不等式包括三角不等式、平均值不等式(Hn≤Gn≤An≤Qn)、二元均值不等式(a^2+b^2≥2ab)、杨氏不等式、柯西不等式、赫尔德不等式等。不等式证明是考研数学考查的重点内容之一,证明方法包括用单调性证明不等式,用中值定理证明不等式,利用凹凸性证明不等式等。考研入学途径有:(一)全日制考研适合人群是应届生。全日制考研要求学员全脱产进行课程学习,课程授课时间一般在周一至周五。对于应届毕业生来说,全日制考研比较合理,因为时间上比较充足,所以方便进行脱产学习。应届本科毕业生就可以考全日制研究生,专科毕业生毕业满2年并且达到与本科毕业同等学力水平也可以报考。(二)在职考研适合人群是有工作经验的人员。在职研究生主要报考方式有专业硕士和同等学力两种,在职研究生专业硕士与全日制实行相同的录取政策,考生需要在通过研究生入学考试之后由院校择优录取入学。在职研究生同等学力是先学后考,一般专科及以上学历人员就可以申请入学,后期结业且学士学位满3年者可以报名参加申硕考试,最终在考试成绩理想且通过答辩的情况下可获得学位证书。
2023-11-19 16:32:501

张宇的六个重要不等式是什么?

张宇的六个重要不等式:三角不等式;几何平均;算数平均与均方根的不等式;杨氏不等式;柯西不等式;施瓦茨不等式;赫尔德不等式。基本不等式是主要应用于求某些函数的最值及证明的不等式。张宇,启航考研数学老师,从事高等数学教学和考研辅导多年,在全国核心期刊发表论文多篇,一篇入选“2007年全球可持续发展大会”。张宇,博士,《考研数学高等数学18讲》、《考研数学题源探析经典1000题》 的作者。
2023-11-19 16:33:051

高等数学证明杨氏不等式问题1不满足定义2怎么得到此步

一般教材上凹凸函数的定义不是这个样子,可推导下,f""(x)<0,所以f(x)=f(x0)+f"(x0)(x-x0)+f""(ζ)/2(x-x0)^2<f(x0)+f"(x0)(x-x0)。把x0取作λx+(1-λ)y,由f(x)<f(x0)+f"(x0)(x-x0)与f(y)<f(x0)+f"(x0)(y-x0)可得第一个式子。f(x)=lnx,f(x^p)=ln(x^p)=plnx,f(y^q)=qlny,相加即lnx+lny=ln(xy)。
2023-11-19 16:33:191

赫尔德不等式的证明

赫尔德不等式有许多证明,主要的想法是杨氏不等式。  如果||f ||p = 0,那么f μ-几乎处处为零,且乘积fg μ-几乎处处为零,因此赫尔德不等式的左端为零。如果||g||q = 0也是这样。因此,我们可以假设||f ||p > 0且||g||q > 0。  如果||f ||p = ∞或||g||q = ∞,那么不等式的右端为无穷大。因此,我们可以假设||f ||p和||g||q位于(0,∞)内。  如果p = ∞且q = 1,那么几乎处处有|fg| ≤ ||f ||∞ |g|,不等式就可以从勒贝格积分的单调性推出。对于p = 1和q = ∞,情况也类似。因此,我们还可以假设p, q ∈ (1,∞)。  分别用f和g除||f ||p||g||q,我们可以假设:  我们现在使用杨氏不等式:  对于所有非负的a和b,当且仅当a = b时等式成立。因此:  两边积分,得:  这便证明了赫尔德不等式。  在p ∈ (1,∞)和||f ||p = ||g||q = 1的假设下,等式成立当且仅当几乎处处有|f |p = |g|q。更一般地,如果||f ||p和||g||q位于(0,∞)内,那么赫尔德不等式变为等式,当且仅当存在α, β > 0(即α = ||g||q且β = ||f ||p),使得:  μ-几乎处处 (*) ||f ||p = 0的情况对应于(*)中的β = 0。||g||q = 的情况对应于(*)中的α = 0。
2023-11-19 16:33:261

holder不等式是什么?

holder不等式是数学分析的一条不等式,取名自奥图·赫尔德(Otto Hlder)。这是一条揭示Lp空间相互关系的基本不等式。赫尔德不等式有许多证明,主要的想法是杨氏不等式。具体如图:证明如果||f||p= 0,那么f在μ-几乎处处为零,且乘积fg在μ-几乎处处为零,因此赫尔德不等式的左端为零。如果||g||q=0也是这样。因此,我们可以假设||f||p>0且||g||q>0。如果||f||p= ∞或||g||q=∞,那么不等式的右端为无穷大。因此,我们可以假设||f||p和||g||q位于(0,∞)内。如果p= ∞且q= 1,那么几乎处处有|fg| ≤ ||f||∞|g|,不等式就可以从勒贝格积分的单调性推出。对于p=1和q=∞,情况也类似。因此,我们还可以假设p,q∈ (1,∞)。
2023-11-19 16:33:341

这个杨氏不等式的运用,我错在哪里?

答案如上图
2023-11-19 16:33:471

赫尔德不等式的简单形式

如下图:1、赫尔德不等式是数学分析的一条不等式,取名自奥图·赫尔德(Otto Hlder)。奥托·赫尔德,出生于斯图加特,毕业于柏林大学,德国数学家。其著名成就包括赫尔德不等式、若尔当-赫尔德定理、赫尔德条件(或称赫尔德连续)。2、杨氏不等式。在数学上,Young"s不等式,指出:假设 a, b, p 和q 是正实数 ,且有1/p + 1/q = 1 ,那么:等号成立当且仅当 ,因为这时。杨氏不等式是加权算术几何平均值不等式的特例,杨氏不等式是证明赫尔德不等式的一个快捷方法。
2023-11-19 16:34:021

考研七个基本不等式是什么?

考研七个基本不等式包括三角不等式、平均值不等式(Hn≤Gn≤An≤Qn)、二元均值不等式(a^2+b^2≥2ab)、杨氏不等式、柯西不等式、赫尔德不等式等。不等式证明是考研数学考查的重点内容之一,证明方法包括用单调性证明不等式,用中值定理证明不等式,利用凹凸性证明不等式等。对于证明数的大小比较的不等式,转化为同一函数在区间两端点函数(或极 限)值大小的比较,利用函数在区间上的单调性进行证明,对于证明函数大小比较的不等式,转化为同一个函数在区间内的任意一点函数值与区间端点函数(或极 限)值大小的比较,利用函数在区间上的单调性进行证明。考研的基本常识考研初试规定提前15分钟进考场,在监考老师检查完相关证件之后,考生就可以进去考场了,根据自己的准考生号找到自己的座位,注意座位都是固定的,千万一定不可以和他人互换座位。坐下来如果还有想去卫生间的想法,就赶紧去抓紧时间,考试期间如果实在忍不住,可以举手示意,监考老师会陪同你一块去的,就是太浪费时间,考试时间如此宝贵,可浪费不得啊,所以考生最好在考前就解决完毕。
2023-11-19 16:34:261

张宇高数18讲基本不等式有哪些?

我的是张宇高数辅导讲义,经典不等式有1三角不等式2几何平均 算数平均 与均方根的不等式3杨氏不等式4柯西不等式5施瓦茨不等式6赫尔德不等式
2023-11-19 16:34:421

求一些著名不等式

外森比克不等式a,b,c为三角形三边长,S是三角形面积,则有:a^2+b^2+c^2≥(4√3)S证明由海伦公式,三角形面积可表示为:S=√[p(p-a)(p-b)(p-c)],其中p=(a+b+c)/2则:4S=√[(a+b+c)(-a+b+c)(a-b+c)(a+b-c)]由于三角形任意两边之和大于第三边,所以根号里各项都是正数,由均值不等式可得:4S=√[(a+b+c)(-a+b+c)(a-b+c)(a+b-c)]≤√{(a+b+c)([(-a+b+c)+(a-b+c)+(a+b-c)]/3)^3}=√{(a+b+c)[(a+b+c)/3]^3}=(a+b+c)^2/(3√3)=[3(a^2+b^2+c^2)-(a-b)^2-(b-c)^2-(c-a)^2]/(3√3)≤(a^2+b^2+c^2)/(√3)也即4S≤(a^2+b^2+c^2)/(√3)整理得a^2+b^2+c^2≥(4√3)S 外森比克不等式还可以加强为:a^2+b^2+c^2≥(4√3)S+(a-b)^2+(b-c)^2+(c-a)^2Finsler-Hadriger不等式
2023-11-19 16:34:511

什么是经典不等式

  一般地,用纯粹的大于号“>”、小于号“<”连接的不等式称为严格不等式,用不小于号(大于或等于号)“≥”、不大于号(小于或等于号)“≤”连接的不等式称为非严格不等式,或称广义不等式。总的来说,用不等号(<,>,≥,≤,≠)连接的式子叫做不等式. 经典不等式有以下23个:琴生不等式均值不等式绝对值不等式权方和不等式赫尔德不等式闵可夫斯基不等式伯努利不等式舒尔不等式切比雪夫不等式幂平均不等式马尔可夫不等式契比雪夫不等式基本不等式卡尔松不等式几何不等式外森比克不等式克拉克森不等式yu不等式施瓦尔兹不等式卡尔松不等式三角不等式erdos不等式Milosevic不等式等周不等式芬斯拉不等式嵌入不等式杨氏不等式车贝契夫不等式马尔可夫不等式典范类不等式佩多不等式四边形不等式肖刚不等式Arakelov不等式卡拉玛特不等式外森比克不等式宫冈-丘不等式柯西—施瓦茨不等式
2023-11-19 16:35:123

张宇高数18讲基本不等式有哪些?

1、三角不等式三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子(这里不作介绍)。三角不等式虽然简单,但却是平面几何不等式里最为基础的结论。2、均值不等式均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。3、柯西不等式柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中非常重要,是高等数学研究内容之一。4、几何平均不等式根号ab,称为几何平均数,这个体现了一个几何关系, 即过一个圆的直径上任意一点做垂线,直径被分开的两部分为a,b, 那么那个垂线在圆内的一半长度就是根号ab,并且 (a+b)/2≥根号ab! 这就是它的几何意思,也是称之为几何平均数的原因。算术-几何平均值不等式,简称算几不等式,是一个常见而基本的不等式,表现了算术平均数和几何平均数之间恒定的不等关系。5、杨氏不等式杨氏不等式又称Young不等式 ,Young不等式是加权算术-几何平均值不等式的特例,Young不等式是证明Holder不等式的一个快捷方法。
2023-11-19 16:40:532

张宇的六个重要不等式做什么?

张宇的六个重要不等式:三角不等式;几何平均;算数平均与均方根的不等式;杨氏不等式;柯西不等式;施瓦茨不等式;赫尔德不等式。基本不等式是主要应用于求某些函数的最值及证明的不等式。1、三角不等式三角不等式即在三角形中两边之和大于第三边,是平面几何不等式里最为基础的结论。广义托勒密定理、欧拉定理及欧拉不等式最后都会用这一不等式导出不等关系。2、平均值不等式Hn≤Gn≤An≤Qn被称为平均值不等式,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数,简记为“调几算方”。3、杨氏不等式杨氏不等式又称Young不等式 ,Young不等式是加权算术-几何平均值不等式的特例,Young不等式是证明Holder不等式的一个快捷方法。
2023-11-19 16:42:031

高等数学的不等式有哪些呢?

1、三角不等式三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子(这里不作介绍)。三角不等式虽然简单,但却是平面几何不等式里最为基础的结论。2、均值不等式均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。3、柯西不等式柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中非常重要,是高等数学研究内容之一。4、几何平均不等式根号ab,称为几何平均数,这个体现了一个几何关系, 即过一个圆的直径上任意一点做垂线,直径被分开的两部分为a,b, 那么那个垂线在圆内的一半长度就是根号ab,并且 (a+b)/2≥根号ab! 这就是它的几何意思,也是称之为几何平均数的原因。算术-几何平均值不等式,简称算几不等式,是一个常见而基本的不等式,表现了算术平均数和几何平均数之间恒定的不等关系。5、杨氏不等式杨氏不等式又称Young不等式 ,Young不等式是加权算术-几何平均值不等式的特例,Young不等式是证明Holder不等式的一个快捷方法。
2023-11-19 16:42:161

数学中有什么不等式?

1、三角不等式三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子(这里不作介绍)。三角不等式虽然简单,但却是平面几何不等式里最为基础的结论。2、均值不等式均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。3、柯西不等式柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中非常重要,是高等数学研究内容之一。4、几何平均不等式根号ab,称为几何平均数,这个体现了一个几何关系, 即过一个圆的直径上任意一点做垂线,直径被分开的两部分为a,b, 那么那个垂线在圆内的一半长度就是根号ab,并且 (a+b)/2≥根号ab! 这就是它的几何意思,也是称之为几何平均数的原因。算术-几何平均值不等式,简称算几不等式,是一个常见而基本的不等式,表现了算术平均数和几何平均数之间恒定的不等关系。5、杨氏不等式杨氏不等式又称Young不等式 ,Young不等式是加权算术-几何平均值不等式的特例,Young不等式是证明Holder不等式的一个快捷方法。
2023-11-19 16:42:291

杨氏不等式的介绍

杨氏不等式又称Young不等式 ,Young不等式是加权算术-几何平均值不等式的特例,Young不等式是证明Holder不等式的一个快捷方法。
2023-11-19 16:42:421

怎样用杨氏不等式证明赫尔德不等式

杨氏不等式:对正实数a,b,p,q,满足1/p+1/q=1,恒有ab≤1/p*a^p+1/q*b^q,等号成立当且仅当a^p=b^q Holder不等式证明如下:令xi=ai/(a1^p+a2^p+...+an^p)^(1/p),yi=bi/(b1^q+b2^q+...+bn^q)^(1/q) ,i=1,2,...n,只需证明: x1y1+x2y2+...+xnyn≤1 而根据杨氏不等式 x1y1+x2y2+..+xnyn ≤1/p(x1^p+x2^p+...+xn^p)+1/q(y1^q+y2^q+...+yn^q) =1/p+1/q =1 这就完成了证明 顺便说明 等号成立当且仅当xi^p=yi^q,即 ai^p/(a1^p+a2^p+...+an^p)=bi^q/(b1^q+b2^q+...+bn^q) 即对任意i,j,i≠j,有 (ai/aj)^p=(bi/bj)^q 当p=q=2时立即得到我们熟知的Cauchy不等式的等号成立条件
2023-11-19 16:42:581

数学不等式有哪些?

1、三角不等式三角不等式,即在三角形中两边之和大于第三边,有时亦指用不等号连接的含有三角函数的式子(这里不作介绍)。三角不等式虽然简单,但却是平面几何不等式里最为基础的结论。2、均值不等式均值不等式,又名平均值不等式、平均不等式,是数学中的一个重要公式。公式内容为Hn≤Gn≤An≤Qn,即调和平均数不超过几何平均数,几何平均数不超过算术平均数,算术平均数不超过平方平均数。3、柯西不等式柯西不等式是由大数学家柯西(Cauchy)在研究数学分析中的“流数”问题时得到的。但从历史的角度讲,该不等式应当称为Cauchy-Buniakowsky-Schwarz不等式【柯西-布尼亚科夫斯基-施瓦茨不等式】,因为,正是后两位数学家彼此独立地在积分学中推而广之,才将这一不等式应用到近乎完善的地步。柯西不等式是由柯西在研究过程中发现的一个不等式,其在解决不等式证明的有关问题中有着十分广泛的应用,所以在高等数学提升中非常重要,是高等数学研究内容之一。4、几何平均不等式根号ab,称为几何平均数,这个体现了一个几何关系, 即过一个圆的直径上任意一点做垂线,直径被分开的两部分为a,b, 那么那个垂线在圆内的一半长度就是根号ab,并且 (a+b)/2≥根号ab! 这就是它的几何意思,也是称之为几何平均数的原因。算术-几何平均值不等式,简称算几不等式,是一个常见而基本的不等式,表现了算术平均数和几何平均数之间恒定的不等关系。5、杨氏不等式杨氏不等式又称Young不等式 ,Young不等式是加权算术-几何平均值不等式的特例,Young不等式是证明Holder不等式的一个快捷方法。
2023-11-19 16:43:171

考研七个基本不等式是什么?

考研七个基本不等式包括三角不等式、平均值不等式(Hn≤Gn≤An≤Qn)、二元均值不等式(a^2+b^2≥2ab)、杨氏不等式、柯西不等式、赫尔德不等式等。不等式证明是考研数学考查的重点内容之一,证明方法包括用单调性证明不等式,用中值定理证明不等式,利用凹凸性证明不等式等。复习注意事项在复习考研数学的时候,常常会陷入的题海战术,认为自己多做题,见到的题型就多,考试的时候就不慌。但是,忽略了考研数学复习量如此大,一味通过做题见识题型,会占用我们大量宝贵复习时间,从而大大降低了考研数学复习的效率。我们通过题海战术见识题型,不如通过对于题型的理解,多思考,掌握举一反三的能力,才是对于我们复习考研数学最有帮助的。
2023-11-19 16:43:311

考研七个基本不等式是什么?

考研七个基本不等式包括三角不等式、平均值不等式(Hn≤Gn≤An≤Qn)、二元均值不等式(a^2+b^2≥2ab)、杨氏不等式、柯西不等式、赫尔德不等式等。不等式证明是考研数学考查的重点内容之一,证明方法包括用单调性证明不等式,用中值定理证明不等式,利用凹凸性证明不等式等。考研入学途径有:(一)全日制考研适合人群是应届生。全日制考研要求学员全脱产进行课程学习,课程授课时间一般在周一至周五。对于应届毕业生来说,全日制考研比较合理,因为时间上比较充足,所以方便进行脱产学习。应届本科毕业生就可以考全日制研究生,专科毕业生毕业满2年并且达到与本科毕业同等学力水平也可以报考。(二)在职考研适合人群是有工作经验的人员。在职研究生主要报考方式有专业硕士和同等学力两种,在职研究生专业硕士与全日制实行相同的录取政策,考生需要在通过研究生入学考试之后由院校择优录取入学。在职研究生同等学力是先学后考,一般专科及以上学历人员就可以申请入学,后期结业且学士学位满3年者可以报名参加申硕考试,最终在考试成绩理想且通过答辩的情况下可获得学位证书。
2023-11-19 16:43:481

考研七个基本不等式有哪些?

考研七个基本不等式包括三角不等式、平均值不等式(Hn≤Gn≤An≤Qn)、二元均值不等式(a^2+b^2≥2ab)、杨氏不等式、柯西不等式、赫尔德不等式等。不等式证明是考研数学考查的重点内容之一,证明方法包括用单调性证明不等式,用中值定理证明不等式,利用凹凸性证明不等式等。考研入学途径有:(一)全日制考研适合人群是应届生。全日制考研要求学员全脱产进行课程学习,课程授课时间一般在周一至周五。对于应届毕业生来说,全日制考研比较合理,因为时间上比较充足,所以方便进行脱产学习。应届本科毕业生就可以考全日制研究生,专科毕业生毕业满2年并且达到与本科毕业同等学力水平也可以报考。(二)在职考研适合人群是有工作经验的人员。在职研究生主要报考方式有专业硕士和同等学力两种,在职研究生专业硕士与全日制实行相同的录取政策,考生需要在通过研究生入学考试之后由院校择优录取入学。在职研究生同等学力是先学后考,一般专科及以上学历人员就可以申请入学,后期结业且学士学位满3年者可以报名参加申硕考试,最终在考试成绩理想且通过答辩的情况下可获得学位证书。
2023-11-19 16:44:211

与数学不等式有关的人

琴生不等式均值不等式绝对值不等式权方和不等式赫尔德不等式闵可夫斯基不等式伯努利不等式舒尔不等式切比雪夫不等式幂平均不等式马尔可夫不等式契比雪夫不等式基本不等式卡尔松不等式几何不等式外森比克不等式克拉克森不等式yu不等式施瓦尔兹不等式卡尔松不等式[1] 三角不等式erdos不等式Milosevic不等式等周不等式芬斯拉不等式嵌入不等式杨氏不等式车贝契夫不等式马尔可夫不等式典范类不等式佩多不等式四边形不等式肖刚不等式Arakelov不等式卡拉玛特不等式外森比克不等式宫冈-丘不等式柯西—施瓦茨不等式Gronwall不等式
2023-11-19 16:44:361

考研七个基本不等式是什么?

考研七个基本不等式包括三角不等式、平均值不等式(Hn≤Gn≤An≤Qn)、二元均值不等式(a^2+b^2≥2ab)、杨氏不等式、柯西不等式、赫尔德不等式等。不等式证明是考研数学考查的重点内容之一,证明方法包括用单调性证明不等式,用中值定理证明不等式,利用凹凸性证明不等式等。用函数单调性证明不等式:不等式的证明题作为微分的应用经常出现在考研题中。利用函数的单调性证明不等式是不等式证明的基本方法,有时需要两次甚至三次连续使用该方法。其他方法可作为该方法的补充,辅助函数的构造仍是解决问题的关键。考研数学的复习:考研数学是需要我们对基本公式、常考题型等充分掌握的基础上,才能够取得不错的成绩的。所以,建议从暑假才开始复习的朋友,能够通过真题讲解的试题集开始,一章一章地掌握常考知识点和常考题型,要重视参考答案对于试题的讲解,这是我们掌握出题规律和解题技巧的关键。这里要提示一下,我们同学在复习考研数学的时候,常常会陷入的题海战术,认为自己多做题,见到的题型就多,考试的时候就不慌。但是,忽略了考研数学复习量如此大,一味通过做题见识题型,会占用我们大量宝贵复习时间,从而大大降低了考研数学复习的效率。我们通过题海战术见识题型,不如通过对于题型的理解,多思考,掌握举一反三的能力,才是对于我们复习考研数学最有帮助的。
2023-11-19 16:44:452

考研数学不等式包括哪些?

考研七个基本不等式包括三角不等式、平均值不等式(Hn≤Gn≤An≤Qn)、二元均值不等式(a^2+b^2≥2ab)、杨氏不等式、柯西不等式、赫尔德不等式等。不等式证明是考研数学考查的重点内容之一,证明方法包括用单调性证明不等式,用中值定理证明不等式,利用凹凸性证明不等式等。考研入学途径有:(一)全日制考研适合人群是应届生。全日制考研要求学员全脱产进行课程学习,课程授课时间一般在周一至周五。对于应届毕业生来说,全日制考研比较合理,因为时间上比较充足,所以方便进行脱产学习。应届本科毕业生就可以考全日制研究生,专科毕业生毕业满2年并且达到与本科毕业同等学力水平也可以报考。(二)在职考研适合人群是有工作经验的人员。在职研究生主要报考方式有专业硕士和同等学力两种,在职研究生专业硕士与全日制实行相同的录取政策,考生需要在通过研究生入学考试之后由院校择优录取入学。在职研究生同等学力是先学后考,一般专科及以上学历人员就可以申请入学,后期结业且学士学位满3年者可以报名参加申硕考试,最终在考试成绩理想且通过答辩的情况下可获得学位证书。
2023-11-19 16:45:051

考研七个基本不等式分别是什么?

考研七个基本不等式包括三角不等式、平均值不等式(Hn≤Gn≤An≤Qn)、二元均值不等式(a^2+b^2≥2ab)、杨氏不等式、柯西不等式、赫尔德不等式等。不等式证明是考研数学考查的重点内容之一,证明方法包括用单调性证明不等式,用中值定理证明不等式,利用凹凸性证明不等式等。
2023-11-19 16:45:232

考研七个基本不等式是什么?

考研七个基本不等式包括三角不等式、平均值不等式(Hn≤Gn≤An≤Qn)、二元均值不等式(a^2+b^2≥2ab)、杨氏不等式、柯西不等式、赫尔德不等式等。不等式证明是考研数学考查的重点内容之一,证明方法包括用单调性证明不等式,用中值定理证明不等式,利用凹凸性证明不等式等。考研入学途径有:(一)全日制考研适合人群是应届生。全日制考研要求学员全脱产进行课程学习,课程授课时间一般在周一至周五。对于应届毕业生来说,全日制考研比较合理,因为时间上比较充足,所以方便进行脱产学习。应届本科毕业生就可以考全日制研究生,专科毕业生毕业满2年并且达到与本科毕业同等学力水平也可以报考。(二)在职考研适合人群是有工作经验的人员。在职研究生主要报考方式有专业硕士和同等学力两种,在职研究生专业硕士与全日制实行相同的录取政策,考生需要在通过研究生入学考试之后由院校择优录取入学。在职研究生同等学力是先学后考,一般专科及以上学历人员就可以申请入学,后期结业且学士学位满3年者可以报名参加申硕考试,最终在考试成绩理想且通过答辩的情况下可获得学位证书。
2023-11-19 16:45:311

张宇的六个重要不等式是什么?

张宇的六个重要不等式:三角不等式;几何平均;算数平均与均方根的不等式;杨氏不等式;柯西不等式;施瓦茨不等式;赫尔德不等式。代表作品《考研数学高等数学18讲》。《张宇线性代数9讲》。《考研数学概率论与数理统计9讲》 。《考研数学题源探析经典1000题》 。《张宇考研数学真题大全解》。《张宇考研数学闭关修炼一百八十题》 。《考研数学命题人终极预测8套卷》 。《张宇考研数学最后4套卷》。《概率论与数理统计辅导讲义》。
2023-11-19 16:45:591

杨氏不等式的加权形式

假设是非负实数,,,那么其中任意小而任意大。 当且仅当a=b时等号成立 Young不等式是加权算术-几何平均值不等式的特例,Young不等式是证明Holder不等式的一个快捷方法
2023-11-19 16:46:121

张宇的六个重要不等式是什么?

张宇的六个重要不等式:三角不等式;几何平均;算数平均与均方根的不等式;杨氏不等式;柯西不等式;施瓦茨不等式;赫尔德不等式。基本不等式是主要应用于求某些函数的最值及证明的不等式。张宇,启航考研数学老师,从事高等数学教学和考研辅导多年,在全国核心期刊发表论文多篇,一篇入选“2007年全球可持续发展大会”。张宇,博士,《考研数学高等数学18讲》、《考研数学题源探析经典1000题》 的作者。代表作品:《考研数学高等数学18讲》。《张宇线性代数9讲》。《考研数学概率论与数理统计9讲》 。《考研数学题源探析经典1000题》。《张宇考研数学真题大全解》。《张宇考研数学闭关修炼一百八十题》。《考研数学命题人终极预测8套卷》。《张宇考研数学最后4套卷》。《概率论与数理统计辅导讲义》。
2023-11-19 16:46:581

考研七个基本不等式是什么

考研七个基本不等式包括三角不等式、平均值不等式(Hn≤Gn≤An≤Qn)、二元均值不等式(a^2+b^2≥2ab)、杨氏不等式、柯西不等式、赫尔德不等式等。不等式证明是考研数学考查的重点内容之一,证明方法包括用单调性证明不等式,用中值定理证明不等式,利用凹凸性证明不等式等。考研入学途径有:(一)全日制考研适合人群是应届生。全日制考研要求学员全脱产进行课程学习,课程授课时间一般在周一至周五。对于应届毕业生来说,全日制考研比较合理,因为时间上比较充足,所以方便进行脱产学习。应届本科毕业生就可以考全日制研究生,专科毕业生毕业满2年并且达到与本科毕业同等学力水平也可以报考。(二)在职考研适合人群是有工作经验的人员。在职研究生主要报考方式有专业硕士和同等学力两种,在职研究生专业硕士与全日制实行相同的录取政策,考生需要在通过研究生入学考试之后由院校择优录取入学。在职研究生同等学力是先学后考,一般专科及以上学历人员就可以申请入学,后期结业且学士学位满3年者可以报名参加申硕考试,最终在考试成绩理想且通过答辩的情况下可获得学位证书。
2023-11-19 16:47:111

不等式的证明有哪些方法?

考研七个基本不等式包括三角不等式、平均值不等式(Hn≤Gn≤An≤Qn)、二元均值不等式(a^2+b^2≥2ab)、杨氏不等式、柯西不等式、赫尔德不等式等。不等式证明是考研数学考查的重点内容之一,证明方法包括用单调性证明不等式,用中值定理证明不等式,利用凹凸性证明不等式等。考研入学途径有:(一)全日制考研适合人群是应届生。全日制考研要求学员全脱产进行课程学习,课程授课时间一般在周一至周五。对于应届毕业生来说,全日制考研比较合理,因为时间上比较充足,所以方便进行脱产学习。应届本科毕业生就可以考全日制研究生,专科毕业生毕业满2年并且达到与本科毕业同等学力水平也可以报考。(二)在职考研适合人群是有工作经验的人员。在职研究生主要报考方式有专业硕士和同等学力两种,在职研究生专业硕士与全日制实行相同的录取政策,考生需要在通过研究生入学考试之后由院校择优录取入学。在职研究生同等学力是先学后考,一般专科及以上学历人员就可以申请入学,后期结业且学士学位满3年者可以报名参加申硕考试,最终在考试成绩理想且通过答辩的情况下可获得学位证书。
2023-11-19 16:47:261

杨氏不等式的一般形式

假设是非负实数,, ,那么等号成立当且仅当 .
2023-11-19 16:47:411

赫尔德不等式证明

赫尔德不等式有许多证明,主要的想法是杨氏不等式。  如果||f ||p = 0,那么f μ-几乎处处为零,且乘积fg μ-几乎处处为零,因此赫尔德不等式的左端为零。如果||g||q = 0也是这样。因此,我们可以假设||f ||p > 0且||g||q > 0。  如果||f ||p = ∞或||g||q = ∞,那么不等式的右端为无穷大。因此,我们可以假设||f ||p和||g||q位于(0,∞)内。  如果p = ∞且q = 1,那么几乎处处有|fg| ≤ ||f ||∞ |g|,不等式就可以从勒贝格积分的单调性推出。对于p = 1和q = ∞,情况也类似。因此,我们还可以假设p, q ∈ (1,∞)。  分别用f和g除||f ||p||g||q,我们可以假设:  我们现在使用杨氏不等式:  对于所有非负的a和b,当且仅当a = b时等式成立。因此:  两边积分,得:  这便证明了赫尔德不等式。  在p ∈ (1,∞)和||f ||p = ||g||q = 1的假设下,等式成立当且仅当几乎处处有|f |p = |g|q。更一般地,如果||f ||p和||g||q位于(0,∞)内,那么赫尔德不等式变为等式,当且仅当存在α, β > 0(即α = ||g||q且β = ||f ||p),使得:  μ-几乎处处 (*) ||f ||p = 0的情况对应于(*)中的β = 0。||g||q = 的情况对应于(*)中的α = 0。
2023-11-19 16:47:561

赫尔德不等式的证明

赫尔德不等式有许多证明,主要的想法是杨氏不等式。如果||f||p= 0,那么f在μ-几乎处处为零,且乘积fg在μ-几乎处处为零,因此赫尔德不等式的左端为零。如果||g||q=0也是这样。因此,我们可以假设||f||p>0且||g||q>0。如果||f||p= ∞或||g||q=∞,那么不等式的右端为无穷大。因此,我们可以假设||f||p和||g||q位于(0,∞)内。如果p= ∞且q= 1,那么几乎处处有|fg| ≤ ||f||∞|g|,不等式就可以从勒贝格积分的单调性推出。对于p=1和q=∞,情况也类似。因此,我们还可以假设p,q∈ (1,∞)。分别用f和g除||f||p||g||q,我们可以假设:我们现在使用杨氏不等式:对于所有非负的a和b,当且仅当时 等式成立。因此:两边积分,得:.这便证明了赫尔德不等式。在p∈ (1,∞)和||f||p= ||g||q= 1的假设下,等式成立当且仅当几乎处处有 。更一般地,如果||f||p和||g||q位于(0,∞)内,那么赫尔德不等式变为等式,当且仅当存在α,β>0(即α= ||g||q且β= ||f||p),使得: μ-几乎处处(*)||f||p= 0的情况对应于(*)中的β=0。||g||q=的情况对应于(*)中的α=0。
2023-11-19 16:48:041

不等式的其他不等式

琴生不等式均值不等式绝对值不等式权方和不等式赫尔德不等式闵可夫斯基不等式伯努利不等式舒尔不等式切比雪夫不等式幂平均不等式马尔可夫不等式契比雪夫不等式基本不等式卡尔松不等式几何不等式外森比克不等式克拉克森不等式yu不等式施瓦尔兹不等式卡尔松不等式 三角不等式erdos不等式Milosevic不等式等周不等式芬斯拉不等式嵌入不等式杨氏不等式车贝契夫不等式马尔可夫不等式典范类不等式佩多不等式四边形不等式肖刚不等式Arakelov不等式卡拉玛特不等式外森比克不等式宫冈-丘不等式柯西—施瓦茨不等式Gronwall不等式
2023-11-19 16:48:181

求证赫尔德不等式

赫尔德不等式有许多证明,主要的想法是杨氏不等式。  如果||f ||p = 0,那么f μ-几乎处处为零,且乘积fg μ-几乎处处为零,因此赫尔德不等式的左端为零。如果||g||q = 0也是这样。因此,我们可以假设||f ||p > 0且||g||q > 0。  如果||f ||p = ∞或||g||q = ∞,那么不等式的右端为无穷大。因此,我们可以假设||f ||p和||g||q位于(0,∞)内。  如果p = ∞且q = 1,那么几乎处处有|fg| ≤ ||f ||∞ |g|,不等式就可以从勒贝格积分的单调性推出。对于p = 1和q = ∞,情况也类似。因此,我们还可以假设p, q ∈ (1,∞)。  分别用f和g除||f ||p||g||q,我们可以假设:  我们现在使用杨氏不等式:  对于所有非负的a和b,当且仅当a = b时等式成立。因此:  两边积分,得:  这便证明了赫尔德不等式。  在p ∈ (1,∞)和||f ||p = ||g||q = 1的假设下,等式成立当且仅当几乎处处有|f |p = |g|q。更一般地,如果||f ||p和||g||q位于(0,∞)内,那么赫尔德不等式变为等式,当且仅当存在α, β > 0(即α = ||g||q且β = ||f ||p),使得:  μ-几乎处处 (*) ||f ||p = 0的情况对应于(*)中的β = 0。||g||q = 的情况对应于(*)中的α = 0。打字不易,如满意,望采纳。
2023-11-19 16:48:431

不等式证明是考研数学考查的重点内容之一吗?

考研七个基本不等式包括三角不等式、平均值不等式(Hn≤Gn≤An≤Qn)、二元均值不等式(a^2+b^2≥2ab)、杨氏不等式、柯西不等式、赫尔德不等式等。不等式证明是考研数学考查的重点内容之一,证明方法包括用单调性证明不等式,用中值定理证明不等式,利用凹凸性证明不等式等。考研入学途径有:(一)全日制考研适合人群是应届生。全日制考研要求学员全脱产进行课程学习,课程授课时间一般在周一至周五。对于应届毕业生来说,全日制考研比较合理,因为时间上比较充足,所以方便进行脱产学习。应届本科毕业生就可以考全日制研究生,专科毕业生毕业满2年并且达到与本科毕业同等学力水平也可以报考。(二)在职考研适合人群是有工作经验的人员。在职研究生主要报考方式有专业硕士和同等学力两种,在职研究生专业硕士与全日制实行相同的录取政策,考生需要在通过研究生入学考试之后由院校择优录取入学。在职研究生同等学力是先学后考,一般专科及以上学历人员就可以申请入学,后期结业且学士学位满3年者可以报名参加申硕考试,最终在考试成绩理想且通过答辩的情况下可获得学位证书。
2023-11-19 16:49:161

赫尔德不等式证明

若p和q是共轭指标,那么对于a>0,b>0有a^{1/p}b^{1/q} <= a/p+b/q(利用y=e^x的凸性,由Jensen不等式得到)然后就好办了。如果你要连续的情形,那么取a=|f(x)|^p/||f(x)||_p^pb=|g(x)|^q/||g(x)||_q^q再积分即可。离散的情形类似,取分量再求和。
2023-11-19 16:49:333

舒尔不等式和赫尔德不等式的习题?

舒尔(Schur)不等式 说明,对于所有的非负实数x、y、z和正数t,都有:已知x,y,z>=0 则∑(x^t)(x-y)(x-z)>=0 当且仅当x = y = z,或其中两个数相等而另外一个为零时,等号“=”成立。当t是正的偶数时,不等式对所有的实数x、y和z都成立。 舒尔(schur)不等式的证明: 不妨设x>=y>=z ∑x(x-y)(x-z) =x(x-y)(x-z)+y(y-x)(y-z)+z(z-x)(z-y) >=x(x-y)(x-z)+y(y-x)(y-z) >=x(x-y)(y-z)+y(y-x)(y-z) =(x-y)^2(y-z) >=0 t不是1时同理可证 事实上,当t为任意实数时,我们仍可证明Schur不等式成立。 Schur不等式虽不是联赛大纲中规定掌握的不等式,但在联赛不等式证明题中仍能发挥重要作用。 赫尔德不等式 是数学分析的一条 不等式 ,取名自奥图·赫尔德(Otto H?lder)。这是一条揭示L p 空间的相互关系的基本 不等式 : 设S为测度空间,,及,设f在L p (S)内,g在L q (S)内。则f g在L 1 (S)内,且有 。 若S取作{1,...,n}附计数测度,便得 赫尔德不等式 的特殊情形:对所有实数(或复数)x 1 , ..., x n ; y 1 , ..., y n ,有 。 我们称p和q互为 赫尔德共轭 。 若取S为自然数集附计数测度,便得与上类似的无穷级数 不等式 。 当p = q = 2,便得到柯西-施瓦茨 不等式 。 赫尔德不等式 可以证明L p 空间上一般化的三角 不等式 ,闵可夫斯基 不等式 ,和证明L p 空间是L q 空间的对偶。 [编辑] 备注 在赫尔德共轭的定义中,1/∞意味着零。 如果1 ≤ p,q < ∞,那么||f || p 和||g|| q 表示(可能无穷的)表达式: 以及 如果p = ∞,那么||f || ∞ 表示|f |的本性上确界,||g|| ∞ 也类似。 在 赫尔德不等式 的右端,0乘以∞以及∞乘以0意味着 0。把a > 0乘以∞,则得出 ∞。 [编辑] 证明 赫尔德不等式 有许多证明,主要的想法是杨氏 不等式 。 如果||f || p = 0,那么f μ-几乎处处为零,且乘积fg μ-几乎处处为零,因此 赫尔德不等式 的左端为零。如果||g|| q = 0也是这样。因此,我们可以假设||f || p > 0且||g|| q > 0。 如果||f || p = ∞或||g|| q = ∞,那么 不等式 的右端为无穷大。因此,我们可以假设||f || p 和||g|| q 位于(0,∞)内。 如果p = ∞且q = 1,那么几乎处处有|fg| ≤ ||f || ∞ |g|, 不等式 就可以从勒贝格积分的单调性推出。对于p = 1和q = ∞,情况也类似。因此,我们还可以假设p, q ∈ (1,∞)。 分别用f和g除||f || p ||g|| q ,我们可以假设: 我们现在使用杨氏 不等式 : 对于所有非负的a和b,当且仅当a p = b q 时等式成立。因此: 两边积分,得: 这便证明了 赫尔德不等式 。 在p ∈ (1,∞)和||f || p = ||g|| q = 1的假设下,等式成立当且仅当几乎处处有|f | p = |g| q 。更一般地,如果||f || p 和||g|| q 位于(0,∞)内,那么 赫尔德不等式 变为等式,当且仅当存在α, β > 0(即α = ||g|| q 且β = ||f || p ),使得: μ-几乎处处 (*) ||f || p = 0的情况对应于(*)中的β = 0。||g|| q = 的情况对应于(*)中的α = 0。 [编辑] 参考文献 Hardy, G.H.; J.E. Littlewood & G. Pólya (1934), Inequalities, Cambridge Univ. Press, ISBN 0521358809 H?lder, O. (1889), "Ueber einen Mittelwerthsatz", Nachr. Ges. Wiss. G?ttingen: 38–47 Kuptsov, L.P. (2001), "H?lder inequality", in Hazewinkel, Michiel, 数学百科全书, 克鲁维尔学术出版社, ISBN 978-1556080104 Rogers, L J. (1888), "An extension of a certain theorem in inequalities", Messenger of math 17 : 145–150 Kuttler, Kenneth (2007), An introduction to linear algebra, Online e-book in PDF format, Brigham Young University 邢家省, Young 不等式 在Lp空间中的应用, 聊城大学学报(自然科学版). 2007年 第3期, 第20卷 .于2009-10-27访问. 张愿章, Young 不等式 的证明及应用, 河南科学. 2004年 第01期, 第22卷 .于2009-10-27访问. 取自“ http://zh.wikipedia.org/zh-cn/%E8%B5%AB%E5%B0%94%E5%BE%B7%E4%B8%8D%E7%AD%89%E5%BC%8F ”
2023-11-19 16:50:011

什么是罗伊不等式?

Young不等式又称杨氏不等式 ,Young不等式是加权算术-几何平均值不等式的特例,Young不等式是证明Holder不等式的一个快捷方法。
2023-11-19 16:50:081

焰色试验属于什么变化

焰色试验属于物理变化。焰色反应属于物理变化,而非化学变化,它并未生成新的物质,这一点是常识题当中最常考到的。焰色反应是物质原子内部电子能级的改变,即原子中的电子能量的变化,不涉及物质结构和化学性质的改变。比如当碱金属及其盐在火焰上灼烧时,焰色反应原子中的电子吸收了能量,从能量较低的轨道跃迁到能量较高的轨道,但处于能量较高轨道上的电子是不稳定的,很快跃迁回能量较低的轨道,这时就将多余的能量以光的形式放出。而放出的光的波长在可见光范围内,因而能使火焰呈现颜色。但由于碱金属的原子结构不同,电子跃迁时能量的变化就不相同,就发出不同波长的光,从焰色反应的实验里所看到的特殊焰色就是光谱谱线的颜色。由此可见,焰色反应的原理其实就是电子跃迁。常见的焰色反应及口诀钾紫钡黄绿,钠黄锂紫红;铷紫钙砖红,铜绿锶洋红。即钾离子焰色反应为浅紫色,钡离子焰色反应为黄绿色,钠离子焰色反应为黄色,锂离子焰色反应为紫红色,铷离子焰色反应为紫色,钙离子焰色反应为砖红色,铜离子焰色反应为绿色,锶离子焰色反应为洋红色。
2023-11-19 16:51:271

焰色反应是物理变化还是化学变化

焰色反应是物理变化。它并未生成新物质,焰色反应是物质原子内部电子能级的改变,通俗的说是原子中的电子能量的变化,不涉及物质结构和化学性质的改变。焰色反应是某些金属或它们的挥发性化合物在无色火焰中灼烧时使火焰呈现特征的颜色的反应。有些金属或它们的化合物在灼烧时能使火焰呈特殊颜色。扩展资料:一、焰色反应原因当碱金属及其盐在火焰上灼烧时,原子中的电子吸收了能量,从能量较低的轨道跃迁到能量较高的轨道,但处于能量较高轨道上的电子是不稳定的,很快跃迁回能量较低的轨道,这时就将多余的能量以光的形式放出。而放出的光的波长在可见光范围内(波长为400nm~760nm),因而能使火焰呈现颜色。但由于碱金属的原子结构不同,电子跃迁时能量的变化就不相同,就发出不同波长的光,从焰色反应的实验里所看到的特殊焰色就是光谱谱线的颜色。每种元素的光谱都有一些特征谱线,发出特征的颜色而使火焰着色,根据焰色可以判断某种元素的存在.如焰色洋红色含有锶元素,焰色蓝绿色含有铜元素,焰色黄色含有钠元素,焰色紫色含有钾元素,砖红色则含有钙元素等。二、实验注意事项实验过程中,对于未知液体,利用焰色反应检验离子,因为溶液中可能会含有其他有毒物质,加热后可能会挥发出来,或者加热时可能生成有毒物质,会可能会对实验人员造成伤害。参考资料来源:百度百科-焰色反应
2023-11-19 16:51:516

海水溶解氧影响因素

海水溶解氧影响因素海洋生物的多少、海水的深度、海底植物的多少、人类的污染、温度越高,气体的溶解度越低。海水:海水是一种流体,永远处于不停地运动之中,海水运动使海洋中的物质、能量的循环有较高的速率。海水水体以及海洋中的各种组成物质,构成了对人类生存和发展有着重要意义的海洋环境。海水运动是海洋环境的核心内容,主要由四部分构成:海水运动形式;洋流的成因;表层洋流的分布;洋流对地理环境的影响。波浪海水受海风的作用和气压变化等影响,促使它离开原来的平衡位置,而发生向上、向下、向前和向后方向运动。这就形成了海上的波浪。波浪是一种有规律的周期性的起伏运动。海水运动图片集萃当波浪涌上岸边时,由于海水深度愈来愈浅,下层水的上下运动受到了阻碍,受物体惯性的作用,海水的波浪一浪叠一浪,越涌越多,一浪高过一浪。与此同时,随着水深的变浅,下层水的运动,所受阻力越来越大,以至于到最后,它的运动速度慢于上层的运动速度,受惯性作用,波浪最高处向前倾倒,摔到海滩上,成为飞溅的浪花。海流对海洋中多种物理过程、化学过程、生物过程和地质过程,以及海洋上空的气候和天气的形成及变化,都有影响和制约的作用,故了解和掌握海流的规律、大尺度海-气相互作用和长时期的气候变化,对渔业、航运、排污和军事等都有重要意义。洋流的形成除了受上面这些因素影响外,还受到陆地形状和地转偏向力影响,陆地形状和地转偏向力会迫使洋流在运动过程中,洋流的流动方向发生改变。洋流形成是受多种因素综合作用的结果,这使洋流的分布很复杂,但也是有一定规律的。
2023-11-19 16:29:051

猜你想看