- 兔狮喵
-
e的负x次方的导数为 -e^(-x)。
计算方法:
{ e^(-x) }′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)
本题中可以把-x看作u,即:
{ e^u }′ = e^u * u′ = e^(-x) * (-x)′ = e^(-x) * (-1) = -e^(-x)。
扩展资料:
如果函数y=f(x)在开区间内每一点都可导,就称函数f(x)在区间内可导。这时函数y=f(x)对于区间内的每一个确定的x值,都对应着一个确定的导数值,这就构成一个新的函数,称这个函数为原来函数y=f(x)的导函数。
函数y=f(x)在x0点的导数f"(x0)的几何意义:表示函数曲线在点P0(x0,f(x0))处的切线的斜率(导数的几何意义是该函数曲线在这一点上的切线斜率)。
由基本函数的和、差、积、商或相互复合构成的函数的导函数则可以通过函数的求导法则来推导。基本的求导法则如下:
1、求导的线性:对函数的线性组合求导,等于先对其中每个部分求导后再取线性组合(即①式)。
2、两个函数的乘积的导函数:一导乘二+一乘二导(即②式)。
3、两个函数的商的导函数也是一个分式:(子导乘母-子乘母导)除以母平方(即③式)。
4、如果有复合函数,则用链式法则求导。
参考资料来源:百度百科——导数
- 康康map
-
求解 e 的 x 次方的导数时,可以使用指数函数的导数规则。根据指数函数的导数规则,导数等于原函数乘以底数的自然对数 e。
具体地说,对于函数 f(x) = e^x,其导数可以表示为 f"(x) = e^x。这意味着 e 的 x 次方的导数仍然是 e 的 x 次方。
以下是一些示例,说明如何求解 e 的 x 次方的导数:
求解 f(x) = e^x 的导数: 根据导数规则,导数 f"(x) = e^x。
求解 g(x) = e^(2x) 的导数: 首先,将指数函数的指数 2x 视为一个整体,记为 u = 2x。 然后,使用链式法则求导,即将外部函数和内部函数的导数相乘。 外部函数 f(u) = e^u 的导数为 f"(u) = e^u。 内部函数 u = 2x 的导数为 u"(x) = 2。 最后,根据链式法则,得到 g"(x) = f"(u) * u"(x) = e^u * 2 = 2e^(2x)。
除了指数函数的导数规则,还有一些相关的引申知识点:
对数函数的导数规则: 如果 f(x) = log_a(x) 是以 a 为底的对数函数,那么 f"(x) = 1 / (x * ln(a)),其中 ln(a) 是以 e 为底的对数函数。
指数函数和对数函数的反函数关系: 指数函数和对数函数是互为反函数的关系。如果 f(x) = a^x 是指数函数,那么它的反函数是 f^(-1)(x) = log_a(x),其中 a 是底数。这意味着指数函数和对数函数可以相互转换,例如,a^log_a(x) = x 和 log_a(a^x) = x。
链式法则: 链式法则是用于求解复合函数导数的规则。如果有一个复合函数 f(g(x)),其中 f 是外部函数,g 是内部函数,那么它的导数可以通过 f"(g(x)) * g"(x) 来计算。
指数函数和对数函数的应用: 指数函数和对数函数在许多科学和工程领域中具有广泛的应用。例如,在金融领域,复利计算中的指数函数和对数函数是重要的工具。在物理学中,指数函数和对数函数用于描述衰减、增长、半衰期等现象。
这些是与指数函数和对数函数导数相关的一些引申知识点,它们在数学和实际应用中起着重要的作用。希望这些信息对您有所帮助!如果您还有其他问题,请随时提问。
- 赵大哥哥哥
-
当我们计算e的x次方的导数时,我们可以使用指数函数的导数规则。下面是详细的步骤来计算e的x次方的导数:
1. 首先,我们将e的x次方表示为 y = e^x。
2. 然后,我们应用指数函数的导数规则,该规则表明指数函数的导数等于函数本身的导数,即 dy/dx = e^x。
3. 因此,导数dy/dx等于e^x,也就是说,e的x次方的导数是e^x。
简而言之,e的x次方的导数等于e^x。
这个规则非常有用,因为e^x在数学和科学中经常出现,并且在许多应用中都需要计算其导数。
希望这个详细的回答能帮助你理解e的x次方的导数。如果还有其他问题,请随时告诉我。我很乐意帮助你。
- 左迁
-
直接套公式,导数还是他本身
- u投在线
-
先求函数f(x)=a^x(a>0,a≠1)的导数 f"(x)=lim[f(x+h)-f(x)]/h(h0) =lim[a^(x+h)-a^x]/h(h0) =a^x lim(a^h-1)/h(h0) 对lim(a^h-1)/h(h0)求极限,得lna ∴f"(x)=a^xlna 即(a^x)"=a^xlna 当a=e时,∵ln e=1 ∴(e^x)"=e^x
- 云游索拉里
- CarieVinne
-
先对e的-x次方求导,再对-x求导。那为什么e的-x次方求导还是e的-x次方呢
- 十年阿桑
-
直接
=e^x
- 穆武唐宁
-
e的x次方的导数是它本身
- 黑桃花
-
本身