如何用极限的方法求函数的水平渐进线和竖直渐近线

2023-11-28 16:00:55
TAG: 函数
共13条回复
余辉

用极限的方法求函数的水平渐近线和竖直渐近线:

1、若limf(x)=C,x趋于无穷,则有水平渐近线y=C;

2、若limf(x)=无穷,x趋于x.,则有垂直渐近线x=x;

另外,若limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b,x趋于无穷,则有些渐近线y=kx+b。

当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。渐近线分为垂直渐近线、水平渐近线和斜渐近线;需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。

求渐近线

扩展资料:

注意事项:

1、一个函数不能同时有水平渐近线,垂直渐近线和斜渐近线,因为有水平渐近线和垂直渐近线的话,就不会有斜渐近线。

2、并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。当a=0时,有limf(x)=b (x趋向于无穷时),此时称y=b为函数f(x)的水平渐近线。所以,水平渐近线只是斜渐近线的一种特殊情况。解题时,可以不考虑水平渐近线,而只考虑斜渐近线和铅直渐近线。

参考资料来源:百度百科-斜渐近线

kikcik

用极限的方法求函数的水平渐进线和竖直渐近线用极限的方法求函数的水平渐近线和竖直渐近线:

1、若limf(x)=C,x趋于无穷,则有水平渐近线y=C;

2、若limf(x)=无穷,x趋于x.,则有垂直渐近线x=x;

另外,若limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b,x趋于无穷,则有些渐近线y=kx+b。

当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。渐近线分为垂直渐近线、水平渐近线和斜渐近线;需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。

那么,学习方法有哪些呢?

1、预习

预习是非常重要的学习方法,通过预习,可以熟悉文章的内容与结构,在预习的过程中,可以在自己不懂的地方作上标记,这样上课的时候,就可以带着问题,让自己有针对性去听课,进而提高了学习的兴趣与效率。

2、听课做好笔记

听课是人们接收信息的重要的方式。人们在听课的过程中,可以学习到大部分的内容,因此,把握好听课,非常的重要。一定要集中精力,听教师讲解,并积极的做好笔记,同时参加课堂活动,积极回答老师提出的问题。

3、认真做作业

老师在上完课之后,都会给学生布置作业。做作业的目的是为了进一步的巩固课堂上面学到的内容。所以,一定要认真对待作业。

4、复习与总结

学习之后,一定要进行复习与总结,通过复习与总结,可以让学习到的内容,成为自己的知识,并在复习与总结中,发现新的问题,进一步加深对知识点的理解。

5、保持自信心

自信心可以给人们带来巨大的动力,只有具备自信心,才可以让每一天的学习更加的充满活力,并更好的记忆学习的内容。

小菜G的建站之路

高等数学中,可以用极限的方法求水平渐进线和数值渐进线。

若Lim(x→∞)f(x)=C,则有水平渐近线y=C。

若Lim(x→x0)f(x)=∞,则有铅直渐近线x=x0。

若limf(x)=C,x趋于无穷,则有水平渐近线y=C;

若limf(x)=无穷,x趋于x.,则有垂直渐近线x=x;

另外,若limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b,x趋于无穷,则有些渐近线y=kx+b。

一个函数不能同时有水平渐近线,垂直渐近线和斜渐近线,因为有水平渐近线和垂直渐近线的话,就不会有斜渐近线。

数学解题方法和技巧。

中小学数学,还包括奥数,在学习方面要求方法适宜,有了好的方法和思路,可能会事半功倍!那有哪些方法可以依据呢?希望大家能惯用这些思维和方法来解题!

形象思维方法是指人们用形象思维来认识、解决问题的方法。它的思维基础是具体形象,并从具体形象展开来的思维过程。

形象思维的主要手段是实物、图形、表格和典型等形象材料。它的认识特点是以个别表现一般,始终保留着对事物的直观性。它的思维过程表现为表象、类比、联想、想象。它的思维品质表现为对直观材料进行积极想象,对表象进行加工、提炼进而提示出本质、规律,或求出对象。它的思维目标是解决实际问题,并且在解决问题当中提高自身的思维能力。

实物演示法

利用身边的实物来演示数学题目的条件和问题,及条件与条件,条件与问题之间的关系,在此基础上进行分析思考、寻求解决问题的方法。

这种方法可以使数学内容形象化,数量关系具体化。比如:数学中的相遇问题。通过实物演示不仅能够解决“同时、相向而行、相遇”等术语,而且为学生指明了思维方向。

二年级数学教材中,“三个小朋友见面握手,每两人握一次,共要握几次手”与“用三张不同的数字卡片摆成两位数,共可以摆成多少个两位数”。像这样的有关排列、组合的知识,在小学教学中,如果实物演示的方法,是很难达到预期的教学目标的。

特别是一些数学概念,如果没有实物演示,小学生就不能真正掌握。长方形的面积、长方体的认识、圆柱的体积等的学习,都依赖于实物演示作思维的基础。

图示法

借助直观图形来确定思考方向,寻找思路,求得解决问题的方法。

图示法直观可靠,便于分析数形关系,不受逻辑推导限制,思路灵活开阔,但图示依赖于人们对表象加工整理的可靠性上,一旦图示与实际情况不相符,易使在此基础上的联想、想象出现谬误或走入误区,最后导致错误的结果。

在课堂教学当中,要多用图示的方法来解决问题。有的题目,图画出来了,结果也就出来的;有的题,图画好了,题意学生也就明白了;有的题,画图则可以帮助分析题意、启迪思路,作为其他解法的辅助手段。

列表法

运用列出表格来分析思考、寻找思路、求解问题的方法叫做列表法。列表法清晰明了,便于分析比较、提示规律,也有利于记忆。

它的局限性在于求解范围小,适用题型狭窄,大多跟寻找规律或显示规律有关。比如,正、反比例的内容,整理数据,乘法口诀,数位顺序等内容的教学大都采用“列表法”。

验证法

你的结果正确吗?不能只等教师的评判,重要的是自己心里要清楚,对自己的学习有一个清楚的评价,这是优秀学生必备的学习品质。

验证法应用范围比较广泛,是需要熟练掌握的一项基本功。应当通过实践训练及其长期体验积累,不断提高自己的验证能力和逐步养成严谨细致的好习惯。

(1)用不同的方法验证。教科书上一再提出:减法用加法检验,加法用减法检验,除法用乘法验算,乘法用除法验算。

(2)代入检验。解方程的结果正确吗?用代入法,看等号两边是否相等。还可以把结果当条件进行逆向推算。

(3)是否符合实际。“千教万教教人求真,千学万学学做真人”陶行知先生的话要落实在教学中。比如,做一套衣服需要4米布,现有布31米,可以做多少套衣服?有学生这样做:31÷4≈8(套)

按照“四舍五入法”保留近似数无疑是正确的,但和实际不符合,做衣服的剩余布料只能舍去。教学中,常识性的东西予以重视。做衣服套数的近似计算要用“去尾法”。

(4)验证的动力在猜想和质疑。牛顿曾说过:“没有大胆的猜想,就做不出伟大的发现。”“猜”也是解决问题的一种重要策略。可以开拓学生的思维、激发“我要学”的愿望。为了避免瞎猜,一定学会验证。验证猜测结果是否正确,是否符合要求。如不符合要求,及时调整猜想,直到解决问题。

永节芜贱买断之之耻

1.

垂直渐近线(垂直于x轴)和水平渐近线(平行于x轴):你需要给y求极限(x趋近于正无穷和负无穷各求一次),有极限那么就有水平渐近线。 再看函数的定义域,如果没有间断点,那么肯定没有垂直渐近线,如果有间断点,那么你需要判断在这些间断点的左导数和右导数是否为无穷大,如果是,那么就有垂直渐近线。

2.

斜渐近线:你需要计算y/x的极限(x趋近于正无穷和负无穷各求一次),如果极限存在,那么这个极限就是斜渐近线的斜率,求出斜率k之后,你需要计算y-kx的极限(x趋近于正无穷和负无穷各求一次),这个

人活一辈子,就活一颗心,心好了,一切就都好了,心强大了,一切问题,都不是问题。

  人的心,虽然只有拳头般大小,当它强大的时候,其力量是无穷无尽的,可以战胜一切,当它脆弱的时候,特别容易受伤,容易多愁善感。

  心,是我们的根,是我们的本,我们要努力修炼自己的心,让它变得越来越强大,因为只有内心强大,方可治愈一切。

  没有强大的敌人,只有不够强大的自己

  人生,是一场自己和自己的较量,说到底,是自己与心的较量。如果你能够打开自己的内心,积极乐观的去生活,你会发现,生活并没有想象的那么糟糕。

  面对不容易的生活,我们要不断强大自己的内心,没人扶的时候,一定要靠自己站稳了,只要你站稳了,生活就无法将你撂倒。

  人活着要明白,这个世界,没有强大的敌人,只有不够强大的自己,如果你对现在的生活不满意,千万别抱怨,努力强大自己的内心,才是我们唯一的出路。

  只要你内心足够强大,人生就没有过不去的坎

  人生路上,坎坎坷坷,磕磕绊绊,如果你内心不够强大,那这些坎坎坷坷,磕磕绊绊,都会成为你人生路上,一道道过不去的坎,你会走得异常艰难。

  人生的坎,不好过,特别是心坎,最难过,过了这道坎,还有下道坎,过了这一关,还有下一关。面对这些关关坎坎,我们必须勇敢往前走,即使心里感到害怕,也要硬着头皮往前冲。

  人生没有过不去的坎,只要你勇敢,只要内心足够强大,一切都会过去的,不信,你回过头来看看,你已经跨过了多少坎坷,闯过了多少关。

  内心强大,是治愈一切的良方

  面对生活的不如意,面对情感的波折,面对工作上的糟心,你是否心烦意乱?是否焦躁不安?如果是,请一定要强大自己的内心,因为内心强大,是治愈一切的良方。

  当你的内心,变得足够强大,一切困难,皆可战胜,一切问题,皆可解决。心强则胜,心弱则败,很多时候,打败我们的,不是生活的不如意,也不是情感的波折,更不是工作上的糟心,而是我们内心的脆弱。

  真的,我从来不怕现实太残酷,就怕自己不够勇敢,我从来不怕生活太苦太难,就怕自己不够坚强。我相信,只要我们的内心,变得足够强大,人生就没有那么多鸡毛蒜皮。

  强大自己的内心,我们才能越活越好

  生活的美好,在于追求美好的生活,而美好的生活,源于一颗强大的内心,因为只有内心强大的人,才能消化掉各种不顺心,各种不如意,将阴霾驱散,让美好留在心中。

  心中有美好,生活才美好,心中有阳光,人生才芬芳。一颗阴暗的心,托不起一张灿烂的脸,一颗强大的心,可以美化生活,精彩人生,让我们越活越好。

  生活有点欺软怕硬,如果你内心很脆弱,生活就会打压你,甚至折磨你,如果你内心足够强大,生活就会奖励你,眷顾你,全世界都会对你和颜悦色。

再也不做站长了

x→+∞或-∞时,y→c,y=c 就是f(x)的水平渐近线;比如y=0是y=e^x的水平渐近线;

x→a时,y→+∞或-∞,x=a就是f(x)的铅直平渐近线;比如x=0是y=1/x的铅直渐近线。

渐近线可分为垂直(铅直)渐近线、水平渐近线和斜渐近线。渐近线是指:曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。

扩展资料

可以用求极限的方法来求一个函数的渐近线。

公式:

①水平渐近线:

limx→∞f(x)=au21d2y=alimx→∞f(x)=au21d2y=a

②铅直渐近线:

limx→x0f(x)=∞u21d2x=x0limx→x0f(x)=∞u21d2x=x0

举例:

求函数 y=1xu22121y=1xu22121的水平渐近线和铅直渐近线解:

limx→∞1xu22121=0u21d2y=0limx→∞1xu22121=0u21d2y=0

即水平渐近线为 y = 0

limx→11xu22121=∞u21d2x=1limx→11xu22121=∞u21d2x=1

即铅直渐近线为 x = 1

铅直渐近线就是指垂直渐近线,表达形式为x=a形式。 因分母2x-1≠0,所以x≠1/2,即x=1/2是铅直渐近线。 水平渐近线是一条平行于x轴的直线,表达形式为y=b形式。 因为分子y=lnx,当x趋近于1时,y趋近于0,所以y=0为水平渐近线。

1、垂直渐近线有的话必然是无穷间断点 而该曲线只有在x=-1处趋于无穷,所以呢该曲线有垂直渐近线x=-1

2、水平渐近线 lim(x→无穷)(x-1)/(x+1)=1,所以有水平渐近线y=1

3、斜渐近线 因为一个曲线,同侧水平渐近线和斜渐近线,只能有其中的一种,该曲线两侧都有水平渐近线,所以两侧均无斜渐近线

hdjebs

如何用极限的方法求函数的水平渐进线和竖直渐近线

Stynle_Anh LV12

2015-09-29

满意答案

sxecrd

LV8

推荐于2017-09-12

用极限的方法求函数的水平渐近线和竖直渐近线:

1、若limf(x)=C,x趋于无穷,则有水平渐近线y=C;

2、若limf(x)=无穷,x趋于x.,则有垂直渐近线x=x;

另外,若limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b,x趋于无穷,则有些渐近线y=kx+b。

当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。渐近线分为垂直渐近线、水平渐近线和斜渐近线;需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。

扩展资料:

注意事项:

1、一个函数不能同时有水平渐近线,垂直渐近线和斜渐近线,因为有水平渐近线和垂直渐近线的话,就不会有斜渐近线。

2、并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。当a=0时,有limf(x)=b (x趋向于无穷时),此时称y=b为函数f(x)的水平渐近线。所以,水平渐近线只是斜渐近线的一种特殊情况。解题时,可以不考虑水平渐近线,而只考虑斜渐近线和铅直渐近线。

参考资料来源:百度百科-斜渐近线

雨落烟波起

用极限的方法求函数的水平渐近线和竖直渐近线:

1、若limf(x)=C,x趋于无穷,则有水平渐近线y=C;

2、若limf(x)=无穷,x趋于x.,则有垂直渐近线x=x;

另外,若limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b,x趋于无穷,则有些渐近线y=kx+b。

当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。渐近线分为垂直渐近线、水平渐近线和斜渐近线;需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。

1、一个函数不能同时有水平渐近线,垂直渐近线和斜渐近线,因为有水平渐近线和垂直渐近线的话,就不会有斜渐近线。

2、并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。当a=0时,有limf(x)=b (x趋向于无穷时),此时称y=b为函数f(x)的水平渐近线。所以,水平渐近线只是斜渐近线的一种特殊情况。解题时,可以不考虑水平渐近线,而只考虑斜渐近线和铅直渐近线。

CarieVinne

如何用极限的方法求函数的水平渐进线和竖直渐近线?用极限的方法求函数的水平渐近线和竖直渐近线:

1、若limf(x)=C,x趋于无穷,则有水平渐近线y=C;

2、若limf(x)=无穷,x趋于x.,则有垂直渐近线x=x;

另外,若limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b,x趋于无穷,则有些渐近线y=kx+b。

当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。渐近线分为垂直渐近线、水平渐近线和斜渐近线;需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。

扩展资料:

注意事项:

1、一个函数不能同时有水平渐近线,垂直渐近线和斜渐近线,因为有水平渐近线和垂直渐近线的话,就不会有斜渐近线。

2、并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。当a=0时,有limf(x)=b (x趋向于无穷时),此时称y=b为函数f(x)的水平渐近线。所以,水平渐近线只是斜渐近线的一种特殊情况。解题时,可以不考虑水平渐近线,而只考虑斜渐近线和铅直渐近线。

林下阿希

用极限的方法求函数的水平渐近线和竖直渐近线:

1、若limf(x)=C,x趋于无穷,则有水平渐近线y=C;

2、若limf(x)=无穷,x趋于x.,则有垂直渐近线x=x;

另外,若limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b,x趋于无穷,则有些渐近线y=kx+b。

当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。渐近线分为垂直渐近线、水平渐近线和斜渐近线;需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。

注意事项:

1、一个函数不能同时有水平渐近线,垂直渐近线和斜渐近线,因为有水平渐近线和垂直渐近线的话,就不会有斜渐近线。

2、并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。当a=0时,有limf(x)=b (x趋向于无穷时),此时称y=b为函数f(x)的水平渐近线。所以,水平渐近线只是斜渐近线的一种特殊情况。解题时,可以不考虑水平渐近线,而只考虑斜渐近线和铅直渐近线。

u投在线

若Lim(x→∞)f(x)=C,则有水平渐近线y=C。

若Lim(x→x0)f(x)=∞,则有铅直渐近线x=x0。

需注意其中∞之正负以及x→x0之左右。

二分好久没看

当我们谈论渐近线时,我们会想到什么?一条曲线与一条直线,在遥远的地方无限地接近,又彼此分离。这种若即若离的美感就好像上一节极限我们所提到的欲求完美,却触摸不到绝对的完美。本文,学长将带你穿过迷雾,去“无穷远”处看看渐近线的真容。

用一生的时间去追求完美,但是依然达不到绝对完美

上图中,我们追求完美,会随着时间的流逝逐渐趋向于绝对的完美,但绝对完美就像高压线一样,无法触摸,这种逐渐靠近却又接触不到与极限相似,而这条“高压线”就叫做曲线的渐近线。代入到上篇极限文章的回家模型中:

“回不了家”模型

在回家模型中,以时间为横轴,离家距离为纵轴。时间飞转,离家日近,但永远都进不了家门。在距离-时间图中,房子是我永远到不了的红线,即为渐近线(顾名思义:逐渐靠近的线)

简单了解渐近线的含义后,回到数理的世界。看看水平、垂直、斜三种渐近线的本质来源和相互关系。既然渐近线是直线,其表达式可设为: y=kx+b ,k为渐近线斜率,也极为渐近线与X轴正向夹角的正切值,如下:

K的值等于直线与x轴正向夹角的正切值

那么k就有如下三种情况:

(a) k=0时:tan heta=0Rightarrow heta=0. 此时渐近线与x轴平行,为水平渐近线,表达式为: y=y_{0}

(b) k=infty:tan heta=inftyRightarrow heta=90° 此时渐近线与x轴垂直,为垂直渐近线,表达式为: x=x_{0}

(c) k=非0常数时:tan hetain(0,+infty)Rightarrow0< heta<90° ,此时为斜渐近线。

三种类型的渐近线

三种渐近线的关系

图上三种类型的渐近线,神态各异。但如果我告诉你,三类渐近线对应的曲线形状均相同,只是在坐标系里的位置不同,你有没有一些想法?

那就是,渐近线与X轴不同的夹角,都可以看做是选取了不同的坐标系所致,如下图:

不同坐标下的渐近线

固定图中三条相同的曲线,其渐近线也随之固定。这时转动坐标系:

令x轴与渐近线平行,得到水平渐近线;

令x轴与渐近线垂直,得到垂直渐近线;

令x轴与渐近线成其他任意角,得到斜渐近线。

无论怎么转动坐标系,曲线与渐近线的关系均是:曲线只能无穷趋近于渐近线,但永远触碰不到。以图中的情况为例,对于水平和斜渐近线而言,可以通过x值的变化来描述此过程,即x增大,渐近线和曲线的距离越来越近;而对于垂直渐近线而言,用y来描述,y越大曲线越接近渐近线。

求渐近线

理解渐近线与x/y变量的关系后,接下来我们要了解如何求渐近线。对于斜渐近线和水平渐近线,即x趋近于+∞或-∞时,渐近线的y坐标和曲线y坐标越来越近,既有: lim_{x ightarrow +infty}{(y_{曲线}-y_{渐近线})}=0或lim_{x ightarrow -infty}{(y_{曲线}-y_{渐近线})}=0 即lim_{x ightarrow +infty}{y_{曲线}}=lim_{x ightarrow +infty}y_{渐近线}或lim_{x ightarrow -infty}{y_{曲线}}=lim_{x ightarrow -infty}y_{渐近线}

x趋近于+∞或-∞时,渐近线和曲线的y坐标值逐渐靠近(紫色线越短)

对于水平渐近线有: lim_{x ightarrow +infty}{y_{曲线}}=lim_{x ightarrow +infty}y_{渐近线}=y_{0}或lim_{x ightarrow -infty}{y_{曲线}}=lim_{x ightarrow -infty}y_{渐近线}=y_{1}

有水平渐近线。若 y_{0}=y_{1} ,则为一条水平渐近线;若 y_{0}≠y_{1} ,则为两条水平渐近线,如上图所示。

判据: lim_{x ightarrow +infty}{y_{曲线}}或lim_{x ightarrow -infty}{y_{曲线}} 存在,则有水平渐近线 y=y_{0} 或 y=y_{1} ,其中 y_{0}=lim_{x ightarrow +infty}{y_{曲线}}或y_{1}=lim_{x ightarrow -infty}{y_{曲线}}

对于斜渐近线有:

以上图右侧斜渐近线为例:

lim_{x ightarrow +infty}{(y_{曲线}-y_{渐近线})}=0Rightarrowlim_{x ightarrow +infty}{(y_{曲线}-kx-b)}=0Rightarrowlim_{x ightarrow +infty}{(y_{曲线}-kx)}=b

而 lim_{x ightarrow +infty}{(y_{曲线}-kx)}=bRightarrowlim_{x ightarrow +infty}{(frac{y_{曲线}-kx}{x})}=lim_{x ightarrow +infty}frac{b}{x}=0

即 lim_{x ightarrow +infty}{(frac{y_{曲线}-kx}{x})}=0Rightarrowlim_{x ightarrow +infty}{({frac{y_{曲线}}{x}-k})}=0Rightarrowlim_{x ightarrow +infty}{{frac{y_{曲线}}{x}}}=k

左侧同理可得,即改为x趋近于-∞。

判据为: lim_{x ightarrow +infty}{{frac{y_{曲线}}{x}}},lim_{x ightarrow +infty}{(y_{曲线}-kx)} 均存在时,有斜渐近线 y=k_{1}x+b_{1}

其中 k_{1}=lim_{x ightarrow +infty}{{frac{y_{曲线}}{x}}} , b_{1}=lim_{x ightarrow +infty}{(y_{曲线}-kx)} .

或者, lim_{x ightarrow -infty}{{frac{y_{曲线}}{x}}},lim_{x ightarrow -infty}{(y_{曲线}-kx)} 均存在时,有斜渐近线 y=k_{2}x+b_{2}

其中 k_{2}=lim_{x ightarrow -infty}{{frac{y_{曲线}}{x}}} , b_{2}=lim_{x ightarrow -infty}{(y_{曲线}-kx)} .

若 k_{1}=k_{2},b_{1}=b_{2} ,则是同一条斜渐近线。

最后来讲下垂直渐近线,对于垂直渐近线而言,其与水平/斜渐近线是相反的。即随着y趋近于+∞或者-∞时,渐近线的x坐标和曲线的x坐标越来越近。

随着y趋近于+∞或-∞,渐近线和曲线x坐标越来越近(紫线越短)

以左侧曲线为例:

lim_{y ightarrow +infty}{(x_{曲线}-x_{渐近线})}=0

lim_{y ightarrow +infty}{x_{曲线}}=x_{渐近线}=x_{0}

即 y ightarrow+infty,x ightarrow x_{0}^{-} 反过来 x ightarrow x_{0}^{-},y ightarrow+infty

黑桃花

 一、渐近线的概念和类别

  二、渐近线的方向分析

  从上面的概念我们知道,渐进线是否存在与左右极限的存在性有直接关系,只有当左右极限都不存在时,我们才能说相应的渐近线不存在,如果在某点的一侧极限(左极限或右极限)不存在,但另一侧的极限存在,则在该点仍然是有相应渐近线的,具体说是:

  三、典型例题

  从上面对渐近线的分析可知,大家在判断曲线是否有渐近线、以及求渐近线的时候,一定要注意极限的方向或者说渐近线的方向,绝不能仅由极限不存在就断定渐进线不存在。另外,在求渐近线时,要注意渐近线共有三种类型。

蓦松

如何用极限的方法求函数的水平渐进线和竖直渐近线

有奖励写回答共6个回答

是你找到了我

高粉答主

关注我不会让你失望

关注

成为第1355位粉丝

用极限的方法求函数的水平渐近线和竖直渐近线:

1、若limf(x)=C,x趋于无穷,则有水平渐近线y=C;

2、若limf(x)=无穷,x趋于x.,则有垂直渐近线x=x;

另外,若limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b,x趋于无穷,则有些渐近线y=kx+b。

当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。渐近线分为垂直渐近线、水平渐近线和斜渐近线;需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。

扩展资料:

注意事项:

1、一个函数不能同时有水平渐近线,垂直渐近线和斜渐近线,因为有水平渐近线和垂直渐近线的话,就不会有斜渐近线。

2、并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。当a=0时,有limf(x)=b (x趋向于无穷时),此时称y=b为函数f(x)的水平渐近线。所以,水平渐近线只是斜渐近线的一种特殊情况。解题时,可以不考虑水平渐近线,而只考虑斜渐近线和铅直渐近线。

相关推荐

渐近线的求法

渐近线的求法如下:1、当limf(x)=C,x趋于无穷,则有水平渐近线y=C。2、当limf(x)=无穷,x趋于x。则有垂直渐近线x=x。3、当limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b,x趋于无穷,则有些渐近线y=kx+b。渐近线是指:曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。可分为垂直渐近线、水平渐近线和斜渐近线。双曲线渐近线注意事项1、与双曲线-=1共渐近线的双曲线系方程可表示为 - =λ(λ≠0且λ为待定常数)。2、与椭圆x^2/a^2+y^2/b^2=1(a>b>0)共焦点的曲线系方程可表示为x^2/(a^2-λ)-y^2/(λ-b^2)=1(λ0时为椭圆,b2<λ<a2时为双曲线)。2、双曲线的第二定义:平面内到定点F(c,0)的距离和到定直线l:x=+(-)a2/c的距离之比等于常数e=c/a(c>a>0)的点的轨迹是双曲线,定点是双曲线的焦点,定直线是双曲线的准线,焦准距(焦参数)p=,与椭圆相同.3、焦半径(-=1,F1(-c,0)、F2(c,0)),点p(x0,y0)在双曲线-=1的右支上时,|pF1|=ex0+a,|pF2|=ex0-a;P在左支上时,则|PF1|=ex1+a|PF2|=ex1-a。
2023-11-22 15:07:001

怎么求渐近线?

1水平渐近:一般水平线的方程式是 y=k,水平渐近线是指当 x 趋近于无限大或负无限大时,y 会不会有极限值,如果 y 有极限值 a ,则 y=a 就是水平渐近线。2.垂直渐近线:一般的铅直线是 x=k,如果当 x 趋近于某数 b 时,y 会趋近于无限大或负无限大时,那 x=b 就是铅直渐近线,一般来说大部份是让分母为 0 时。渐近线定义、1、如果曲线上的一点沿着趋于无穷远时,该点与某条直线的距离趋于零,渐近线可分为垂直渐近线、水平渐近线和斜渐近线。2、渐近线是指:曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。渐近线特点:1、无限接近,永不相交,这并不违背定义。 分为垂直渐近线、水平渐近线和斜渐近线。2、需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。
2023-11-22 15:07:231

怎么求渐近线

渐近线算法是:lim(x→∞)f(x)-g(x)/(x-h)=k。渐近线是指:曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。可分为垂直渐近线、水平渐近线和斜渐近线。渐近线分为垂直渐近线、水平渐近线和斜渐近线。需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。平面内,到两个定点的距离之差的绝对值为常数2a(小于这两个定点间的距离)的点的轨迹称为双曲线。定点叫双曲线的焦点,两焦点之间的距离称为焦距,用2c表示。平面内,到给定一点及一直线的距离之比为常数e(e>1,即为双曲线的离心率;定点不在定直线上)的点的轨迹称为双曲线。学习数学的好处数学好的人,相对比较聪明,领悟力较高,在对人处事上能体现出优势。思维比较敏捷,方法点子会较多。美国卡耐基梅隆大学金融数学专业康乔说,学数学带给她的是思维上的锻炼,让我在生活中更加注重思维的严密性。比如说在解决一个事情前,我喜欢把它分成几个板块,一个板块分成几个步骤,就像树枝一样慢慢去挖掘,而不是在一堆资料面前思维混乱。数学是其他学科的基础,学好数学的人,对于其他学科更容易上手。学软件、计算机、金融等工科专业就更是得心应手。
2023-11-22 15:07:351

函数的渐近线怎么求?

要求一个函数的渐近线,通常需要考虑该函数在无穷远处的行为,以及在特定情况下的局部行为。以下是求解函数渐近线的常见方法:1. **水平渐近线(Horizontal Asymptotes)**:对于一个函数 f(x),当 x 趋向正无穷大或负无穷大时,如果函数的极限趋近于一个常数 L,那么 y = L 就是函数的水平渐近线。要找到水平渐近线,可以计算函数在正无穷大和负无穷大处的极限值。2. **垂直渐近线(Vertical Asymptotes)**:垂直渐近线通常出现在函数的分母中的因子为零的点。如果一个函数在某个点 x=a 的右侧或左侧的极限趋向于正无穷大或负无穷大,那么 x=a 就是函数的垂直渐近线。3. **斜渐近线(Oblique or Slant Asymptotes)**:斜渐近线是一种特殊情况,通常出现在有理函数中,当函数的次数分子次数比分母次数高一阶时。可以使用多项式除法来找到斜渐近线。4. **曲线渐近线**:某些函数可能有曲线渐近线,这些渐近线不是直线,而是曲线。这些通常需要数值计算或复杂的分析来找到。要找到函数的渐近线,需要先分析函数的性质、极限和零点,并确定哪种类型的渐近线可能存在。然后,使用相关的数学工具和计算方法来找到渐近线的具体方程式。通常,计算机辅助工具在这方面非常有帮助。
2023-11-22 15:10:191

函数三种渐近线的求法公式

三种渐近线公式是:1、水平渐近线:x→+∞或-∞时,y→c,y=c就是f(x)的水平渐近线;比如y=0是y=e^x的水平渐近线。2、铅直渐近线:x→a时,y→+∞或-∞,x=a就是f(x)的铅直平渐近线;比如x=0是y=1/x的铅直渐近线。3、斜渐近线:当x→∞时,y/x极限为某一常数k,则y=kx+b为斜渐近线。渐近线特点:无限接近,但不可以相交。分为垂直渐近线、水平渐近线和斜渐近线。当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程。当焦点在x轴上时双曲线渐近线的方程是y=x。当焦点在y轴上时双曲线渐近线的方程是y=x。
2023-11-22 15:10:271

如何求曲线的渐近线

如何求曲线的渐近线如下:确定曲线的类型,例如抛物线、双曲线、指数曲线等。根据曲线的类型,确定其渐近线的形式。根据渐近线的形式,求解渐近线的方程。例如,对于双曲线,其渐近线方程为y=±a/b* x。其中a和b分别为双曲线实轴和虚轴的长度。对于抛物线,其渐近线方程为y=0。对于指数函数y=e^x,其渐近线方程为y=0和y=e^∞。需要注意的是,有些曲线没有渐近线。扩展知识:曲线是数学中的一个基本概念,通常指在直角坐标系中,一个函数f(x)在某区间上连续且不断变化所构成的图形。曲线以其优美、流畅、富有变化的特点,在数学中扮演着重要的角色。曲线可以按照其形状、性质和变化趋势等多种方式进行分类。根据形状,曲线可以分为直线、抛物线、双曲线、椭圆等。根据性质,曲线可以分为凸曲线和凹曲线。根据变化趋势,曲线可以分为递增曲线、递减曲线和先递增后递减曲线等。曲线在各种领域中都有着广泛的应用。在物理学中,曲线可以描述物体的运动轨迹,例如行星的运动轨迹。在经济学中,曲线可以描述市场的变化趋势,例如股票价格的波动;在生物学中,曲线可以描述生物的生命周期,例如人口的增长趋势。此外,曲线还在艺术领域中有着广泛的应用。音乐中的旋律、舞蹈中的舞姿、绘画中的线条等,都与曲线有着密切的联系。艺术家们通过运用曲线的变化和韵律,创造出优美、动人的作品。总之,曲线作为数学中的一个基本概念,在各个领域中都有着广泛的应用。通过对曲线的理解和掌握,我们可以更好地理解事物的变化规律和发展趋势,为我们的生活和工作带来更多的便利和启示。
2023-11-22 15:10:331

怎样求函数的渐近线?

求函数的渐近线可以分为以下几步:1. 求出函数的极限值,即当自变量趋近于无穷大或无穷小时,函数的极限值是否存在。2. 判断函数的极限值是否存在水平渐近线。当函数的极限值存在且为有限值时,函数存在水平渐近线,其方程为 y = 极限值。3. 判断函数的极限值是否存在垂直渐近线。当函数的极限值不存在但自变量趋近于某个值时,函数趋近于无穷大或无穷小,此时函数存在垂直渐近线。垂直渐近线的方程为 x = 趋近的值。4. 判断函数的斜渐近线是否存在。当函数的极限值不存在但自变量趋近于无穷大或无穷小时,函数可能存在斜渐近线。斜渐近线的方程可以通过求出函数的斜渐限来得到,即将函数化简为 y = kx + b 的形式,其中 k 为斜率,b 为截距,k 的值等于函数的斜渐限。需要注意的是,求出函数的渐近线需要对函数进行化简和分析,需要一定的数学基础和技巧。
2023-11-22 15:11:561

渐近线怎么求?

问题一:怎么求一个函数的渐近线 解:函数的渐近线有两种:(1)铅直渐近线:即直线x=x0判断方法:lim(x→x0)f(x)=+∞(或-∞),即直线x=x0为铅直渐近线(2)斜渐近线:(不妨设为y=ax+b)判断方法:lim(x→∞)[f(x)-(ax+b)]=0即可再由:1.lim(x→∞)[f(x)/x]=a2.lim(x→∞)[f(x)-ax]=b求出a,b水平渐近线就是a=0的情况(已包括在内) 问题二:请问大学高数内容:如何求曲线的三种渐近线??请大家讲一下方法 问题三:怎么求函数的渐近线 高等数学 lim(x→∞)y=a (a≠∞),则y=a为水平渐近线 lim(x→b)y=∞ (b≠∞),则x=b为垂直渐近线 lim(x→∞)y/x=c (c≠0且c≠∞),则存在斜渐近线,lim(x→∞)y-cx=d,则y=cx+d为斜渐近线 问题四:怎么求水平渐近线和垂直渐近线 x---->+无穷大或-∞时,y----->c,y=c 就是f(x)的水平渐近线;比如y=0是y=e^x的水平渐近线; x--->a时,y--->+无穷大或-∞,x=a就是f(x)的铅直平渐近线 ;比如x=0是y=1/x的铅直渐近线 问题五:给出函数,怎么求它是否有渐近线? 【俊狼猎英】团队为您解答~ 有三种渐近线 水平:x趋向于正无穷或负无穷时,y去向于常数a,则y=a是水平渐近线 垂直:x趋向于b时,y趋向于无穷,则x=b是垂直渐近线 斜:当x趋向于无穷时,函数y=f(x)无限接近一条固定直线y=Ax+B,即斜渐近线 具体求法:x趋向于无穷时,limy/x=A,lim[y-Ax]=B,则有y=Ax+B是斜渐近线
2023-11-22 15:12:021

渐近线的计算公式是什么?

斜渐近线的计算公式是:a=lim(f(x)/x),b=lim(f(x)-kx)。如果存在直线L:y=kx+b,使得当x趋于无穷(或x趋于正无穷,x趋于负无穷)时,曲线y=f(x)上的动点M(x,y)到直线L的距离d(M,L)趋于0,则称L为曲线y=f(x)的渐近线。当直线L的斜率k不等于0时,称L为斜渐近线。证明:直线L:y=kx+b为曲线y=f(x)的渐近线的充分必要条件是。k=lim[f(x)/x](x趋于无穷或正无穷或负无穷)。b=lim[f(x)-kx](x趋于无穷或正无穷或负无穷)。综合法和分析法来求斜渐近线。1、斜渐近线若当x趋向于无穷时,函数y=f(x)无限接近一条固定直线y=Ax+B,当然也即PM=f(x)-(Ax+B)的极限为零,则称y=Ax+B为函数y=f(x)的斜渐近线。渐近线用来描述曲面上法曲率为零的方向,所形成的曲线,曲面上一点可以使法曲率为零的方向称为曲面在该点的渐进方向。2、双曲线渐近线方程是一种几何图形的算法,这种主要解决实际中建筑物在建筑的时候的一些数据的处理。双曲线的主要特点是无限接近,但不可以相交。分为铅直渐近线、水平渐近线和斜渐近线。3、部分分式又称部分分数、分项分式,是将有理数式分拆成数个有理数式的技巧,有理数式可分为真分式、假分式和带分式,这和一般分数中的真分数、假分数和带分数的概念相近。真分式分子的次数少于分母的。
2023-11-22 15:12:111

渐近线方程怎么求

求渐近线方程通常有两种方法:一种是直接根据定义来求,另一种是根据极限来求。1、根据定义来求渐近线方程,需要满足三个条件:一是函数在某点附近有定义;二是函数在某点附近有有限的极限;三是函数的极限值等于函数在该点处的函数值。如果满足这三个条件,则称函数在该点处存在渐近线。渐近线的方程可以表示为y=kx+b,其中k和b是常数,可以根据函数的定义和极限值来确定。2、另一种方法是利用极限来求渐近线方程。对于一些函数,当x趋于无穷大或无穷小时,它们的值会趋于一个常数。这个常数就是函数的极限值。如果函数的极限值存在,那么函数在该点处就存在渐近线。渐近线的方程也可以通过求函数的导数来确定。如果函数在某点处的导数等于0,则该点就是函数的极值点。此时,函数在该点处就存在水平渐近线。如果函数在某点处的导数趋于无穷大,则该点就是函数的间断点。此时,函数在该点处就存在垂直渐近线。方程的三要素:1、等号是方程的核心要素。等号将方程的左边和右边分开,表示两边的值是相等的。在数学中,等号是一个非常重要的符号,它用来表示两个数值是相等的。在方程中,等号的意义非常特殊,它把方程的解定义为使等号两边的数值相等的未知数的值。2、未知数是方程的第二个要素。在方程中,我们通常用一个字母来表示未知数,如x、y或z等。未知数是我们需要求解的对象,它代表了一个我们暂时不知道的数值。求解方程的过程就是找到这个未知数的值的过程。3、已知数是方程的第三个要素。与未知数相对的是已知数,它们是在方程中已经给出的数值。已知数提供了解决问题的线索,它们为方程提供了已知的信息。求解方程的过程就是通过已知数和未知数的关系,找到未知数的值的过程。
2023-11-22 15:12:231

渐近线怎么求啊?求解

这是数学问题吧,一、图像法二、基本函数法看函数是经过基本函数怎样变换得来的,结合原函数可以求得此外,渐近线分铅垂、水平、斜三类,当初我自学时还掌握得不错,可是……岁月催人老-----------------------------------------这是我引用的,可以看出,他一出门就放了一个屁求渐近线方法渐近线分为两种//信我的,三种没错一种是垂直渐近线:这种渐近线的形式为x=a,也就是函数在x=a处的值为无穷大。所以求这种渐近线的时候只要找函数的特殊点,然后验证在该点的函数值是否为无穷大即可另一种是斜渐近线:这种渐近线的形式为y=kx+b,反映函数在无穷远点的性态先求k,k=limf(x)/x再求b,b=limf(x)-kx极限过程都是x趋向于无穷大
2023-11-22 15:13:157

怎样求函数渐近线

解:函数的渐近线有两种:(1)铅直渐近线:即直线x=x0判断方法:lim(x→x0)f(x)=+∞(或-∞),即直线x=x0为铅直渐近线(2)斜渐近线:(不妨设为y=ax+b)判断方法:lim(x→∞)[f(x)-(ax+b)]=0即可再由:1.lim(x→∞)[f(x)/x]=a2.lim(x→∞)[f(x)-ax]=b求出a,b水平渐近线就是a=0的情况(已包括在内)
2023-11-22 15:13:322

高数,函数渐近线求法?谁能解释一下~

一元函数的渐近线通常有三种。第一种是无穷间断点x0,渐近线就是x=x0。第二种是x趋于正无穷或负无穷时,函数f(x)的极限f(inf),渐近线就是y=f(inf)。至于第三种,就是斜渐近线,斜率k是x趋于正无穷或负无穷时,f(x)/x的极限,截距b是x趋于正无穷或负无穷时,f(x)-kx的极限,渐近线就是y=kx+b。
2023-11-22 15:13:543

水平渐近线怎么求步骤

一、垂直渐近线(垂直于x轴)和水平渐近线(平行于x轴):你需要给y求极限(x趋近于正无穷和负无穷各求一次),有极限那么就有水平渐近线。再看函数的定义域,如果没有间断点,那么肯定没有垂直渐近线,如果有间断点,那么你需要判断在这些间断点的左导数和右导数是否为无穷大,如果是,那么就有垂直渐近线。二、斜渐近线:你需要计算y/x的极限(x趋近于正无穷和负无穷各求一次),如果极限存在,那么这个极限就是斜渐近线的斜率,求出斜率k之后,你需要计算y-kx的极限(x趋近于正无穷和负无穷各求一次),这个极限就是斜渐近线的截距。当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。扩展资料相关结论1、与x^2/a^2-y^2/b^2=1渐近线相同的双曲线的方程,有无数条(且焦点可能在x轴或y轴上);2、与x^2/a^2-y^2/b^2=1渐近线相同的双曲线可设为x^2/a^2-y^2/b^2=N,进行求解;3、x^2/a^2-y^2/b^2=1的渐近线方程为 b/a*x=y;4、y^2/a^2-x^2/b^2=1的渐近线方程为 a/b*x=y。
2023-11-22 15:14:084

曲线的垂直渐近线怎么求

垂直渐近线(垂直于x轴)和水平渐近线(平行于x轴):需要给y求极限(x趋近于正无穷和负无穷各求一次),有极限那么就有水平渐近线。再看函数的定义域,如果没有间断点,那么肯定没有垂直渐近线,如果有间断点,那么需要判断在这些间断点的左导数和右导数是否为无穷大,如果是,那么就有垂直渐近线。渐近线是指:曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。可分为垂直渐近线、水平渐近线和斜渐近线。渐近线相关结论1.与x^2/a^2-y^2/b^2=1渐近线相同的双曲线的方程,有无数条(且焦点可能在x轴或y轴上);2.与x^2/a^2-y^2/b^2=1渐近线相同的双曲线可设为x^2/a^2-y^2/b^2=N,进行求解;3.x^2/a^2-y^2/b^2=1的渐近线方程为±b/a*x=y;4.y^2/a^2-x^2/b^2=1的渐近线方程为±a/b*x=y
2023-11-22 15:14:361

怎么求一条曲线的垂直渐近线

求渐近线,可以依据以下结论: 若极限lim[f(x)/x,x→∞]=a存在,且极限lim[f(x)-ax,x→+∞]=b也存在,那么曲线y=f(x)具有渐近线y=ax+b.[1] 例:求渐近线. (1)x = - 1为其垂直渐近线. (2),即a = 1; ,即b = - 1; 所以y = x - 1也是其渐近线. 双曲线两渐近线夹角一半的余弦等于c/a,2c为两焦点的距离,2a为轨迹上的点到焦点的距离差. 渐近线: asymptotic lineasymptote
2023-11-22 15:14:441

函数y= f(x)求斜渐近线的方法

函数的斜渐近线求法:(1)当x趋向于正无穷时,lim[f(x)/x]=a ,且a不等于0而且当x趋向于正无穷lim[f(x)-ax]=b,那么有斜渐近线y=ax+b(2)当x趋向于负无穷时,重复上述过程,找出是否存在另一条斜渐近。当x趋于无穷大时,如果函数y=f(x)无限接近固定直线y=ax+B(函数y=f(x)和直线y=ax+B之间的垂直距离PN无穷小且limpn=0),当然,也就是说,PM=f(x)-(ax+B)的极限为零,则y=ax+B是函数y=f(x)的斜渐近线。扩展资料:注意事项1、斜渐近线是一条(或多条)与函数图像无限接近但不相交的线。2、当a=0,limf(x)=B(当x趋于无穷大时),则y=B是函数f(x)的水平渐近线,因此,水平渐近线只是斜渐近线的一个特例,为了方便求解,不能考虑水平渐近线,而只能考虑斜渐近线和垂直渐近线。参考资料来源:百度百科-斜渐近线
2023-11-22 15:15:211

高数:怎么用极限求斜渐近线?

lim(x→+∞)f(x)/x=k, lim(x→+∞){f(x)-kx}=b 或lim(x→-∞)f(x)/x=k, lim(x→-∞){f(x)-kx}=b 渐进线:y=kx+b
2023-11-22 15:15:362

铅直渐近线方程,求过程?

拿到关于函数渐近线的题目依次进行如下步骤。1、判断铅直渐近线这个很简单,看函数的在断点处是否趋于无穷,若是,则此次为铅直渐近线2、判断有无水平渐近线令x趋近于正负无穷,看此时函数的两个极限是否存在,若存在则y=limf(x) 这是水平渐近线。(极限符号不会打。。。)3、判断是否有斜渐近线当函数在x趋近于无穷时极限不存在(即无水平渐近线)则计算f(x)÷x在x趋近于无穷时的极限,如果这个极限存在那么这就是斜渐近线的斜率k。得到k后再计算f(x)-kx在x趋近于无穷的极限,这个极限就是截距。得到斜率和截距就可以写出斜渐近线了。
2023-11-22 15:15:572

高数求水平渐近线

2023-11-22 15:16:492

求下列函数的渐近线

令 x^2-3x+2=0,得 x1=1,x2=2,所以有铅直渐近线 x=1 和 x=2,当 x->无穷大时,y->0,因此有水平渐近线 y=0。
2023-11-22 15:17:042

微积分1,求渐近线

x=0是函数间断点,所以x=0是一条。x→无穷的时候,y→1,因此y=1也是一条。一共两条渐近线。
2023-11-22 15:17:291

微积分的渐近线求步骤方法

x趋近与∞时,y趋近于某个常数 这个常数就是水平渐近线x趋近于某个常数,y趋近于无穷大时 这个常数是垂直渐近线y/x 当x趋近于无穷大时 极限趋近于某个常数k,对(y-kx),当x趋近于无穷大时,y-kx趋近于某个常数c,y=kx-c就是斜渐近线。
2023-11-22 15:17:372

怎么用导数知识求函数的渐近线?

函数渐近线怎么求如下:1、铅直渐近线的求法:通常求垂直渐近线,先观察x的定义域,然后判断其间断点,当x趋近于某一点x0时,y的极限是无穷,那其就有垂直渐近线,x=x0为其铅直渐近线。就拿上弯清面那个例题来看,当x=0或x=1时,y无意义,x=0和x=1为其间断漏销点。当x趋近于0时,y的极限值为无穷,当x趋近于1时,y的极限值为无穷,因此,x=0,x=1分别为该去学的铅直渐近线。2、水平渐近线的求法:当x趋于正无穷或负无穷时,若y的极限值为常数a,则y=a为其水平渐近线。上面这题,当x趋于正无穷时,显然y的极埋搜前限值为无穷。当x趋于负无穷时,y的极限值为ln2,因此其水平渐近线为y=ln2。3、斜渐近线的求法:求斜渐近线,通常是当x趋于正无穷或负无穷时,求y/x的极限值,此时的值就是a。然后再求x趋于无穷时,(y-ax)的极限值,此时的值便是b的值。那此时的斜渐近线就求出来了。值得注意的是,当x趋于负无穷时,其有水平渐近线,那x趋于负无穷时自然便没有斜渐近线了。上面那道例题,按照方法,可求出a=1,b=0,所以其斜渐近线为y=x,故有四条渐近线。
2023-11-22 15:17:441

求函数的渐近线?

求渐近线的一般步骤:1)列出函数的所有间断点,如间断点x=a处函数值趋于∞,则该处有垂直渐近线x=a;2)求x→∞时的极限,如存在极限值c,那么有水平渐近线y=c;3)求x→∞时f(x)/x的极限,如存在极限值k,则有斜渐近线y=kx+b,其中b=lim|f(x)-kx|。对于本题:1)有间断点x=a和x=-3,分别求极限:lim[exp(x)-exp(a)]/[(x-a)(x+3)]【x→a】=lim[exp(x)]/(2x+3-a)【x→a】…………应用洛必达法则=exp(a)/(a+3)根据题意a>0,所以x=a处极限存在,此处无渐近线;lim[exp(x)-exp(a)]/[(x-a)(x+3)]【x→-3】=∞所以x=-3处有垂直渐近线x=-3;2)容易求得:lim[exp(x)-exp(a)]/[(x-a)(x+3)]【x→+∞】=+∞lim[exp(x)-exp(a)]/[(x-a)(x+3)]【x→-∞】=0所以在负半支上有水平渐近线y=0;3)容易求得:lim[exp(x)-exp(a)]/[x(x-a)(x+3)]【x→+∞】=+∞lim[exp(x)-exp(a)]/[x(x-a)(x+3)]【x→-∞】=0得到的k=0,与第二项重复。综上函数共有两条渐近线x=-3和y=0。图象(a=1)如下:
2023-11-22 15:18:063

一个求函数渐近线

4、两条渐近线:y = x-1/2 ,y = -x+1/2 。lim(x->+∞) f(x) / x = 1(上下同除以 x 可得),且 lim(x->+∞) [f(x)-x] = -1/2 (分子有理化可得),因此有渐近线 y=x-1/2 。同理考察 x -> -∞ 时可得渐近线 y = -x+1/2 。
2023-11-22 15:18:241

求曲线的渐近线,求过程!

y=根号[4(x+1/2)^2-2],不存在水平和垂直渐近线lim[y/x,x→∞]=lim根号[4(x+1/2)^2-2]/x=根号(4+4/x-1/x^2)当x→∞,极限=2又有lim[y-2x,x→∞]=lim根号[4(x+1/2)^2-2]-2x=1因此渐近线为y=2x+1
2023-11-22 15:18:312

渐近线怎么求

渐近线求法:例题如下:1、铅直渐近线的求法:通常求垂直渐近线,先观察x的定义域,然后判断其间断点,当x趋近于某一点x0时,y的极限是无穷,那其就有垂直渐近线,x=x0为其铅直渐近线。就拿上面那个例题来看,当x=0或x=1时,y无意义,x=0和x=1为其间断点。当x趋近于0时,y的极限值为无穷,当x趋近于1时,y的极限值为无穷,因此,x=0,x=1分别为该去学的铅直渐近线。2、水平渐近线的求法:当x趋于正无穷或负无穷时,若y的极限值为常数a,则y=a为其水平渐近线。上面这题,当x趋于正无穷时,显然y的极限值为无穷。当x趋于负无穷时,y的极限值为ln2,因此其水平渐近线为y=ln2。3、斜渐近线的求法:求斜渐近线,通常是当x趋于正无穷或负无穷时,求y/x的极限值,此时的值就是a。然后再求x趋于无穷时,(y-ax)的极限值,此时的值便是b的值。那此时的斜渐近线就求出来了。值得注意的是,当x趋于负无穷时,其有水平渐近线,那x趋于负无穷时自然便没有斜渐近线了。上面那道例题,按照方法,可求出a=1,b=0,所以其斜渐近线为y=x,故有四条渐近线。
2023-11-22 15:18:551

求渐近线的方法高数

求渐近线的方法高数如下:一元函数的渐近线通常有三种。第一种是无穷间断点x0,渐近线就是x=x0。第二种是x趋于正无穷或负无穷时,函数f(x)的极限f(inf),渐近线就是y=f(inf)。至于第三种,就是斜渐近线,斜率k是x趋于正无穷或负无穷时,f(x)/x的极限,截距b是x趋于正无穷或负无穷时,f(x)-kx的极限,渐近线就是y=kx+b。资料扩展:渐近线是指:曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。可分为垂直渐近线、水平渐近线和斜渐近线。当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。根据渐近线的位置,可将渐近线分为三类:水平渐近线、铅直渐近线、斜渐近线。求渐近线,可以依据以下结论:双曲线两渐近线夹角一半的余弦等于a/c且2c为两焦点的距离,2a为轨迹上的点到焦点的距离差。
2023-11-22 15:19:081

函数的渐近线怎么求

函数的渐近线怎么求如下:渐近线是指:曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。渐近线分为垂直渐近线、水平渐近线和斜渐近线。需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。渐近线分为垂直渐近线、水平渐近线和斜渐近线。需要注意的是:并不是所有曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。固定的距离差是a的两倍,这里的a是从双曲线的中心到双曲线最近的分支的顶点的距离。a还叫做双曲线的实半轴。焦点位于贯穿轴上,它们的中间点叫做中心,中心一般位于原点处。当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。极限是数学中的一个重要概念,它描述了函数在某一点或无穷远处的行为。而渐近线是指函数图像在无穷远处的一条特殊直线。相关结论:1、与x^2/a^2-y^2/b^2=1渐近线相同的双曲线的方程,有无数条(且焦点可能在x轴或y轴上)。2、与x^2/a^2-y^2/b^2=1渐近线相同的双曲线可设为x^2/a^2-y^2/b^2=N,进行求解。3、x^2/a^2-y^2/b^2=1的渐近线方程为b/a*x=y。4、y^2/a^2-x^2/b^2=1的渐近线方程为a/b*x=y。
2023-11-22 15:19:261

渐近线如何求?

水平:x趋向于正无穷或负无穷时,y去向于常数a,则y=a是水平渐近线。垂直:x趋向于b时,y趋向于无穷,则x=b是垂直渐近线。斜:当x趋向于无穷时,函数y=f(x)无限接近一条固定直线y=Ax+B,即斜渐近线。具体求法:x趋向于无穷时,limy/x=A,lim[y-Ax]=B,则有y=Ax+B是斜渐近线。扩展资料:曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。与x^2/a^2-y^2/b^2=1渐近线相同的双曲线的方程,有无数条(且焦点可能在x轴或y轴上);与x^2/a^2-y^2/b^2=1渐近线相同的双曲线可设为x^2/a^2-y^2/b^2=N,进行求解。
2023-11-22 15:19:451

渐近线怎么求高等数学

渐近线求法:例题如下:1、铅直渐近线的求法:通常求垂直渐近线,先观察x的定义域,然后判断其间断点,当x趋近于某一点x0时,y的极限是无穷,那其就有垂直渐近线,x=x0为其铅直渐近线。就拿上面那个例题来看,当x=0或x=1时,y无意义,x=0和x=1为其间断点。当x趋近于0时,y的极限值为无穷,当x趋近于1时,y的极限值为无穷,因此,x=0,x=1分别为该去学的铅直渐近线。2、水平渐近线的求法:当x趋于正无穷或负无穷时,若y的极限值为常数a,则y=a为其水平渐近线。上面这题,当x趋于正无穷时,显然y的极限值为无穷。当x趋于负无穷时,y的极限值为ln2,因此其水平渐近线为y=ln2。3、斜渐近线的求法:求斜渐近线,通常是当x趋于正无穷或负无穷时,求y/x的极限值,此时的值就是a。然后再求x趋于无穷时,(y-ax)的极限值,此时的值便是b的值。那此时的斜渐近线就求出来了。值得注意的是,当x趋于负无穷时,其有水平渐近线,那x趋于负无穷时自然便没有斜渐近线了。上面那道例题,按照方法,可求出a=1,b=0,所以其斜渐近线为y=x,故有四条渐近线。
2023-11-22 15:19:591

渐近线怎么求?

要求一个函数的渐近线,通常需要考虑该函数在无穷远处的行为,以及在特定情况下的局部行为。以下是求解函数渐近线的常见方法:1. **水平渐近线(Horizontal Asymptotes)**:对于一个函数 f(x),当 x 趋向正无穷大或负无穷大时,如果函数的极限趋近于一个常数 L,那么 y = L 就是函数的水平渐近线。要找到水平渐近线,可以计算函数在正无穷大和负无穷大处的极限值。2. **垂直渐近线(Vertical Asymptotes)**:垂直渐近线通常出现在函数的分母中的因子为零的点。如果一个函数在某个点 x=a 的右侧或左侧的极限趋向于正无穷大或负无穷大,那么 x=a 就是函数的垂直渐近线。3. **斜渐近线(Oblique or Slant Asymptotes)**:斜渐近线是一种特殊情况,通常出现在有理函数中,当函数的次数分子次数比分母次数高一阶时。可以使用多项式除法来找到斜渐近线。4. **曲线渐近线**:某些函数可能有曲线渐近线,这些渐近线不是直线,而是曲线。这些通常需要数值计算或复杂的分析来找到。要找到函数的渐近线,需要先分析函数的性质、极限和零点,并确定哪种类型的渐近线可能存在。然后,使用相关的数学工具和计算方法来找到渐近线的具体方程式。通常,计算机辅助工具在这方面非常有帮助。
2023-11-22 15:20:111

大一高数渐近线的求法

大一高数渐近线的求法:首先判断渐近线的类型,渐近线的类型不同则解法不同,具体包括铅直渐近线、水平渐近线和斜渐近线;其次可以根据题中条件画图,结合着来解决渐近线。渐近线是指曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。1、铅直渐近线的求法:通常求垂直渐近线,先观察x的定义域,然后判断其间断点,当x趋近于某一点x0时,y的极限是无穷,那其就有垂直渐近线,x=x0为其铅直渐近线。2、水平渐近线的求法:当x趋于正无穷或负无穷时,若y的极限值为常数a,则y=a为其水平渐近线。3、斜渐近线的求法:通常是当x趋于正无穷或负无穷时,求y/x的极限值,此时的值就是a。然后再求x趋于无穷时,(y-ax)的极限值,此时的值便是b的值。那此时的斜渐近线就求出来了。值得注意的是,当x趋于负无穷时,其有水平渐近线,那x趋于负无穷时自然便没有斜渐近线了。
2023-11-22 15:20:201

如何求一个函数的渐近线呢?

渐近线定义为如果曲线上的一点沿着趋于无穷远时,该点与某条直线的距离趋于零,则称此条直线为曲线的渐近线。根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。如果当x—>x0时,limf(x)=∞(+∞或-∞),x0一般为间断点,就把x = x0叫做的垂直渐近线;如果当x—>+∞(-∞)时,limf(x)=y0,就把y = y0叫做的水平渐近线;若极限lim[f(x)/x,x→∞]=a存在,且极限lim[f(x)-ax,x→+∞]=b也存在,那么曲线y=f(x)具有斜渐近线y=ax+b。
2023-11-22 15:20:381

如何计算渐近线的方程?

三种渐近线公式是:1、水平渐近线:x→+∞或-∞时,y→c,y=c就是f(x)的水平渐近线;比如y=0是y=e^x的水平渐近线。2、铅直渐近线:x→a时,y→+∞或-∞,x=a就是f(x)的铅直平渐近线;比如x=0是y=1/x的铅直渐近线。3、斜渐近线:当x→∞时,y/x极限为某一常数k,则y=kx+b为斜渐近线。渐近线特点:无限接近,但不可以相交。分为垂直渐近线、水平渐近线和斜渐近线。当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。y=k/x(k≠0)是反比例函数,其图象关于原点对称,x=0,y=0为其渐近线方程。当焦点在x轴上时双曲线渐近线的方程是y=x。当焦点在y轴上时双曲线渐近线的方程是y=x。
2023-11-22 15:21:121

曲线的渐近线怎样求?

曲线的渐近线有三种,分别为水平渐近线,垂直渐近线和斜渐近线三种,设曲线的方程为y=f(x);当x趋于无穷时,f(x)的极限为某一常数c,则y=c所表示的直线为其水平渐近线;当x趋于x0,f(x)的极限为无穷是,这x=x0为其垂直渐近线当x趋于无穷时,f(x)/x的极限是k,f(x)-kx的极限是b,则y=kx+b是其斜渐近线.
2023-11-22 15:21:451

如何求函数的渐近线?

这是数学问题吧,一、图像法二、基本函数法看函数是经过基本函数怎样变换得来的,结合原函数可以求得此外,渐近线分铅垂、水平、斜三类,当初我自学时还掌握得不错,可是……岁月催人老-----------------------------------------这是我引用的,可以看出,他一出门就放了一个屁求渐近线方法渐近线分为两种//信我的,三种没错一种是垂直渐近线:这种渐近线的形式为x=a,也就是函数在x=a处的值为无穷大。所以求这种渐近线的时候只要找函数的特殊点,然后验证在该点的函数值是否为无穷大即可另一种是斜渐近线:这种渐近线的形式为y=kx+b,反映函数在无穷远点的性态先求k,k=limf(x)/x再求b,b=limf(x)-kx极限过程都是x趋向于无穷大
2023-11-22 15:23:177

渐近线怎么求

渐近线求法:例题如下:1、铅直渐近线的求法:通常求垂直渐近线,先观察x的定义域,然后判断其间断点,当x趋近于某一点x0时,y的极限是无穷,那其就有垂直渐近线,x=x0为其铅直渐近线。就拿上面那个例题来看,当x=0或x=1时,y无意义,x=0和x=1为其间断点。当x趋近于0时,y的极限值为无穷,当x趋近于1时,y的极限值为无穷,因此,x=0,x=1分别为该去学的铅直渐近线。2、水平渐近线的求法:当x趋于正无穷或负无穷时,若y的极限值为常数a,则y=a为其水平渐近线。上面这题,当x趋于正无穷时,显然y的极限值为无穷。当x趋于负无穷时,y的极限值为ln2,因此其水平渐近线为y=ln2。3、斜渐近线的求法:求斜渐近线,通常是当x趋于正无穷或负无穷时,求y/x的极限值,此时的值就是a。然后再求x趋于无穷时,(y-ax)的极限值,此时的值便是b的值。那此时的斜渐近线就求出来了。值得注意的是,当x趋于负无穷时,其有水平渐近线,那x趋于负无穷时自然便没有斜渐近线了。上面那道例题,按照方法,可求出a=1,b=0,所以其斜渐近线为y=x,故有四条渐近线。
2023-11-22 15:26:411

斜渐近线怎么求啊?

斜渐近线的计算公式是:a=lim(f(x)/x),b=lim(f(x)-kx)。如果存在直线L:y=kx+b,使得当x趋于无穷(或x趋于正无穷,x趋于负无穷)时,曲线y=f(x)上的动点M(x,y)到直线L的距离d(M,L)趋于0,则称L为曲线y=f(x)的渐近线。当直线L的斜率k不等于0时,称L为斜渐近线。证明:直线L:y=kx+b为曲线y=f(x)的渐近线的充分必要条件是。k=lim[f(x)/x](x趋于无穷或正无穷或负无穷)。b=lim[f(x)-kx](x趋于无穷或正无穷或负无穷)。综合法和分析法来求斜渐近线。1、斜渐近线若当x趋向于无穷时,函数y=f(x)无限接近一条固定直线y=Ax+B,当然也即PM=f(x)-(Ax+B)的极限为零,则称y=Ax+B为函数y=f(x)的斜渐近线。渐近线用来描述曲面上法曲率为零的方向,所形成的曲线,曲面上一点可以使法曲率为零的方向称为曲面在该点的渐进方向。2、双曲线渐近线方程是一种几何图形的算法,这种主要解决实际中建筑物在建筑的时候的一些数据的处理。双曲线的主要特点是无限接近,但不可以相交。分为铅直渐近线、水平渐近线和斜渐近线。3、部分分式又称部分分数、分项分式,是将有理数式分拆成数个有理数式的技巧,有理数式可分为真分式、假分式和带分式,这和一般分数中的真分数、假分数和带分数的概念相近。真分式分子的次数少于分母的。
2023-11-22 15:26:531

曲线的渐近线怎么求?

求x→±∞时y→a,只要a≠±∞,那么y=a是水平渐近线;求x→b时使y→±∞,只要b≠±∞,那么x=b是垂直渐近线;求x→±∞时y/x→c,只要c≠0且c≠±∞,再求x→±∞时y-cx→d,那么y=cx+d是斜渐近线。
2023-11-22 15:27:083

考研数学: 求曲线的渐近线条数

有些回答,真是误人子弟,实在看不下去,给你做一下吧!
2023-11-22 15:30:232

铅直渐近线和水平渐近线怎么求?

铅直渐近线就是若x->a,f(x)->∞,那么x=a就是铅直渐近线, 如果x->∞,可以是正无穷大也可以是负无穷大,f(x)->a,那么y=a就是函数的水平渐近线
2023-11-22 15:31:081

大一高数渐近线的求法

大一高数渐近线的求法:首先判断渐近线的类型,渐近线的类型不同则解法不同,具体包括铅直渐近线、水平渐近线和斜渐近线;其次可以根据题中条件画图,结合着来解决渐近线。渐近线是指曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。1、铅直渐近线的求法:通常求垂直渐近线,先观察x的定义域,然后判断其间断点,当x趋近于某一点x0时,y的极限是无穷,那其就有垂直渐近线,x=x0为其铅直渐近线。2、水平渐近线的求法:当x趋于正无穷或负无穷时,若y的极限值为常数a,则y=a为其水平渐近线。3、斜渐近线的求法:通常是当x趋于正无穷或负无穷时,求y/x的极限值,此时的值就是a。然后再求x趋于无穷时,(y-ax)的极限值,此时的值便是b的值。那此时的斜渐近线就求出来了。值得注意的是,当x趋于负无穷时,其有水平渐近线,那x趋于负无穷时自然便没有斜渐近线了。
2023-11-22 15:31:221

怎么求函数的渐近线

求渐近线方法:一种是垂直渐近线:这种渐近线的形式为x=a。也就是函数在x=a处的值为无穷大。所以求这种渐近线的时候只要找函数的特殊点,然后验证在该点的函数值是否为无穷大即可。另一种是斜渐近线:这种渐近线的形式为y=kx+b。反映函数在无穷远点的性态。先求k,k=limf(x)/x,再求b,b=limf(x)-kx。极限过程都是x趋向于无穷。渐近线是指:曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。可分为垂直渐近线、水平渐近线和斜渐近线。
2023-11-22 15:31:421

垂直渐近线怎么求

要求渐近线,就是求极限,水平、垂直和斜的,思考要全面。三种渐近线:若limf(x)=C,x趋于无穷,则有水平渐近线y=C;若limf(x)=无穷,x趋于x。,则有垂直渐近线x=x。;若limf(x)/x=k不等于0,x趋于无穷,lim(f(x)-kx)=b, x趋于无穷,则有些渐近线y=kx+b。水平的就是指当x→∞时,limitf(x)存在,即limitf(x)=C为某一常数。则y = C 水平渐进线。垂直的就是指当x→C时,y→∞。一般来说,满足分母为0的x,就是所求的渐进线。 x = C 就是垂直渐进线;更一般的渐进线则 若x→∞时,a = f(x)/x,存在,则再求b = f(x)-ax,(x→∞)则y = ax + b就是函数的渐进线。
2023-11-22 15:31:511

渐近线方程怎么解?

已知渐进线方程是ax+by=0,那么可设双曲线方程是a^2x^2-b^2y^2=k,然后用一个坐标代入求得K就行了。当曲线上一点M沿曲线无限远离原点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。需要注意的是:并不是所有的曲线都有渐近线,渐近线反映了某些曲线在无限延伸时的变化情况。根据渐近线的位置,可将渐近线分为三类:水平渐近线、垂直渐近线、斜渐近线。扩展资料:双曲线渐近线方程与双曲线 - =1共渐近线的双曲线系方程可表示为 - =λ(λ≠0且λ为待定常数)双曲线渐近线方程与椭圆 =1(a>b>0)共焦点的曲线系方程可表示为 - =1(λ0时为椭圆, b2<λ<a2时为双曲线)双曲线的每个分支具有从双曲线的中心进一步延伸的更直(较低曲率)的两个臂。对角线对面的手臂,一个从每个分支,倾向于一个共同的线,称为这两个臂的渐近线。所以有两个渐近线,其交点位于双曲线的对称中心,这可以被认为是每个分支反射以形成另一个分支的镜像点。在曲线{displaystylef(x)=1/x}f(x)=1/x的情况下,渐近线是两个坐标轴。参考资料来源:百度百科--双曲线渐近线方程参考资料来源:百度百科--双曲线
2023-11-22 15:31:582

函数渐近线怎么求

函数渐近线怎么求如下:1、铅直渐近线的求法:通常求垂直渐近线,先观察x的定义域,然后判断其间断点,当x趋近于某一点x0时,y的极限是无穷,那其就有垂直渐近线,x=x0为其铅直渐近线。就拿上弯清面那个例题来看,当x=0或x=1时,y无意义,x=0和x=1为其间断漏销点。当x趋近于0时,y的极限值为无穷,当x趋近于1时,y的极限值为无穷,因此,x=0,x=1分别为该去学的铅直渐近线。2、水平渐近线的求法:当x趋于正无穷或负无穷时,若y的极限值为常数a,则y=a为其水平渐近线。上面这题,当x趋于正无穷时,显然y的极埋搜前限值为无穷。当x趋于负无穷时,y的极限值为ln2,因此其水平渐近线为y=ln2。3、斜渐近线的求法:求斜渐近线,通常是当x趋于正无穷或负无穷时,求y/x的极限值,此时的值就是a。然后再求x趋于无穷时,(y-ax)的极限值,此时的值便是b的值。那此时的斜渐近线就求出来了。值得注意的是,当x趋于负无穷时,其有水平渐近线,那x趋于负无穷时自然便没有斜渐近线了。上面那道例题,按照方法,可求出a=1,b=0,所以其斜渐近线为y=x,故有四条渐近线。
2023-11-22 15:32:101

如何求曲线的水平渐近线

、垂直渐近线(垂直于x轴)和水平渐近线(平行于x轴):你需要给y求极限(x趋近于正无穷和负无穷各求一次),有极限那么就有水平渐近线。再看函数的定义域,如果没有间断点,那么肯定没有垂直渐近线,如果有间断点,那么你需要判断在这些间断点的左导数和右导数是否为无穷大,如果是,那么就有垂直渐近线。二、斜渐近线:你需要计算y/x的极限(x趋近于正无穷和负无穷各求一次),如果极限存在,那么这个极限就是斜渐近线的斜率,求出斜率k之后,你需要计算y-kx的极限(x趋近于正无穷和负无穷各求一次),这个极限就是斜渐近线的截距。当曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。
2023-11-22 15:32:312

垂直渐近线怎么求

  垂直渐近线(垂直于x轴)和水平渐近线(平行于x轴):需要给y求极限(x趋近于正无穷和负无穷各求一次),有极限那么就有水平渐近线。再看函数的定义域,如果没有间断点,那么肯定没有垂直渐近线,如果有间断点,那么需要判断在这些间断点的左导数和右导数是否为无穷大,如果是,那么就有垂直渐近线。   渐近线是指:曲线上一点M沿曲线无限远离原点或无限接近间断点时,如果M到一条直线的距离无限趋近于零,那么这条直线称为这条曲线的渐近线。可分为垂直渐近线、水平渐近线和斜渐近线。   渐近线相关结论   1、与x^2/a^2-y^2/b^2=1渐近线相同的双曲线的方程,有无数条(且焦点可能在x轴或y轴上);   2、与x^2/a^2-y^2/b^2=1渐近线相同的双曲线可设为x^2/a^2-y^2/b^2=N,进行求解;   3、x^2/a^2-y^2/b^2=1的渐近线方程为±b/a*x=y;   4、y^2/a^2-x^2/b^2=1的渐近线方程为±a/b*x=y。
2023-11-22 15:33:331

猜你想看