- Chen
-
化循环小数为分数的方法:
1、纯循环小数化成分数的法则是:抄下一个循环节作为分子;连写几个9作为分母,9的个数等于一个循环节的位数。
例如:0.7272……循环节为7,2两位,因此化为分数为72/99=1/8;
2、混循环小数化成分数的法则是:这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。分母的头几位数是9,末几位是0。9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。
例如0.41666……化成分数,第二个循环节以前的小数部分组成的数416,小数部分中不循环部分组成的数41,差是416-41=375作为分子;循环节中的位数是1位,9的个数是1,不循环部分的位数是2位,0的个数是2,900作为分母。因此化为分数为375/900=5/12。
扩展资料:
无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。
例如:0.333333……
循环节为3
则0.33333.....=3*10^(-1)+3*10^(-2)+……+3*10^(-n)+……
前n项和为:0.3[1-(0.1)^(n)]/(1-0.1)
当n趋向无穷时(0.1)^(n)=0
因此0.3333……=0.3/0.9=1/3
注意:m^n的意义为m的n次方。
再如:0.999999.......
循环节为9
则0.9999.....=9*10^(-1)+9*10^(-2)+……+9*10^(-n)+……
前n项和为:{0.9*[1-(0.1)^n]}/(1-0.1)
当n趋向无穷时(0.1)^n=0
因此:0.99999.....=0.9/0.9=1
混循环小数
例:0.12111…… 1的循环,同样,我们设此小数为x,可得:
1000x-100x=121.111……-12.111……
900x=109
X=109/900
例:将无限循环小数0.123(·)化成分数:
解题:已知无限循环小数:0.123(·),将已知无限循环小数0.123(·)的未知分数设为X,
∴X=0.123(·)——1式,(1式)两边同时乘以10得:
10X=1.23(·)——2式,(2式)-(1式)得:9X=1.11,X =1.11/9,
X =0.37/3,X =37/300,∴X=0.123(·)=37/300,即:0.123(·)=37/300
归纳
它的公式是:
X·10∧(a+c)-x·10∧a,这里的a是小数点后的循环节前的数字的位数,c代表循环节位数。
带小数也适用!!
参考资料:百度百科--无限循环小数化分数
- 北有云溪
-
有限小数可以化成分数,那么循环小数怎样化成分数呢?
日本野口哲典在《天哪!数学原来可以这样学》中介绍了如何将循环小数转化成分数的方法,现介绍如下:
1.循环小数0.7272……循环节为7,2两位,因此化为分数为72/99=1/8.即有几位循环数字就除以几个9。又如0.123123……循环节为1,2,3三位,因此化为分数为123/999=41/333.
这种方法只适用于从小数点后第一位就开始循环的小数,如果不是从第一位就开始循环的小数,必须用下面的方法。
2.循环小数0.41666……先把0.41666……乘以100得41.666……,可以理解为41+0.666……,所以写成分数为41+6/9=41+2/3=125/3.因为开始乘以了100,所以再除以100,即125/3÷100=125/300=5/12.
快尝试一下吧。
- CatMTan
-
以0.3334444...为例,把它分为0.333和0.04444...两部分
有限小数化法为:小数点后有几位,把小数点后面的所有位数作为分子,分母为一个1和几个0,0的数量与小数点后位数相同,能约分要约分。0.333是有限小数,且小数点后有三位,所以333为分子,分母为1和三个0,即1000——0.333因此为333/1000。
0.0004444...因为它是无限混循环小数,小数点后的位数无限,他不像有限小数那样,可化为(n/2的m次幂)、(n/5的m次幂)或(n/10的m次幂),他只能化成其他一类数作为分子的分数,我们可以把它扩大10的n次幂倍,然后减去原数,讨厌的无限循环自然就消失了。
请看我这一招:设0.0004444...为a,则有
a=0.0004444...①
1000a=0.4444...②
10000a=4.4444...③
③-②=9000a=4
a=4/9000=1/2250
则:0.3334444...=333/1000+1/2250=3037/90000
以上是混循环小数化分数方法,纯循环小数则更简单了
如:0.60606060...
设p=0.60606060....则有
100p=60.606060....
100p-p=60
99p=60
p=60/99
总之,化纯循环小数时,把一段循环节作为分子,分母是纯粹的9,9的歌属于一段循环节的位数相同。
混循环小数时,前面不循环部分是有限的,把不循环部分那个有限小数化成分数后,小数点后将会留下几个零和循环节。第二部分,也就是无限小数部分,将无限小数部分的循环节作为分子,分母为几个9和几个0,9的个数无限小数部分的循环节位数相同,0的个数与无限小数部分最前面的0个数相同。之后将两个分数相加,得到一个新的分数就是那个无限混循环小数。
无限不循环小数无法换成分数,第一它的小数点后位数无限;第二它没有循环节
如:1.4142135623730950488016887242097...,无论如何也化不成分数
- 陶小凡
-
如何将循环小数转化成分数的方法,现介绍如下:
1.循环小数0.7272……循环节为7,2两位,因此化为分数为72/99=1/8.即有几位循环数字就除以几个9。又如0.123123……循环节为1,2,3三位,因此化为分数为123/999=41/333.
这种方法只适用于从小数点后第一位就开始循环的小数,如果不是从第一位就开始循环的小数,必须用下面的方法。
2.循环小数0.41666……先把0.41666……乘以100得41.666……,可以理解为41+0.666……,所以写成分数为41+6/9=41+2/3=125/3.因为开始乘以了100,所以再除以100,即125/3÷100=125/300=5/12.
- 介事_
-
纯循环小数化分数。
将纯循环小数改写成分数,分子是一个循环节的数字组成的数;分母各位数字都是9,9的个数与循环节中的数字的个数相同.
例如:0.111...=1/9、0.12341234...=1234/9999。
混循环小数化分数。
将混循环小数改写成分数,分子是不循环部分与第一个循环节连成的数字组成的数,减去不循环部分数字组成的数之差;分母的头几位数字是9,末几位数字是0,9的个数跟循环节的数位相同,0的个数跟不循环部分的数位相同.
例如:0.1234234234…=(1234-1)/9990 0.55889888988898...=(558898-55)/999900。
扩展资料:
简单分数化成小数的情况有三种:
(1)真分数化成小数——分子除以分母;
(2)假分数化成小数——分子除以分母;
(3)带分数化成小数——先将带分数化成假分数,再用假分数的分子除以分母。
分数化小数:
(1)分数化为纯循环小数。一个最简分数能化为纯循环小数的充分必要条件是分母的质因数里没有2和5,其循环节的位数等于能被该最简分数的分母整除的最小的99…9形式的数中9的个数。
(2)分数化为混循环小数。一个最简分数能化为混循环小数的充分必要条件是分母既含有质因数2或5,又含有2和5以外的质因数。化成的混循环小数中,不循环的位数等于分母里的因素2或5的指数中较大的一个;循环节的位数,等于能被分母中异于2,5的因子整除的最小的99…9形式的数中,数9的个数。
- 苏萦
-
①纯循环小数小数部分化成分数:将一个循环节的数字组成的数作为分子,分母的各位都是9,9的个数与循环节的位数相同,最后能约分的再约分。
②混循环小数小数部分化成分数:分子是第二个循环节以前的小数部分的数字组成的数与不循环部分的数字所组成的数之差,分母的头几位数字是9,9的个数与一个循环节的位数相同,末几位是0,0的个数与不循环部分的位数相同。
扩展资料
无限循环小数,先找其循环节(即循环的那几位数字),然后将其展开为一等比数列、求出前n项和、取极限、化简。
例如:0.333333……
循环节为3
则0.3=3*10^(-1)+3*10^(-2)+……+3^10(-n)+……
前n项和为:30.1(1-(0.1)^(n))/(1-0.1)
当n趋向无穷时(0.1)^(n)=0
因此0.3333……=0.3/0.9=1/3
注意:m^n的意义为m的n次方。
方法2:设0.3333……,三的循环为x,
10x=3.3333……
10x-x=3.3333……-0.3333……
(注意:循环节被抵消了)
9x=3
3x=1
x=1/3
第二种:如,将3.305030503050……(3050为循环节)化为分数。
解:设:这个数的小数部分为a,这个小数表示成3+a
10000a-a=3050
9999a=3050
a=3050/9999
算到这里后,能约分就约分,这样就能表示循环部分了。再把整数部分乘分母加进去就是
(3×9999+3050)/9999
=33047/9999
还有混循环小数转分数
如0.1555……
循环节有一位,分母写个9,非循环节有一位,在9后添个0
分子为非循环节+循环节(连接)-非循环节+15-1=14
14/90
约分后为7/4
- 林下阿希
-
分子是1,化成的小数的循环节里有n位数字的纯循环小数的分数,简称为F(n)
把命题:分子是1,化成的小数的循环节里有n位数字的纯循环小数的最大分数,简称为M(n)
根据循环小数化分数的方法,为了便于寻找规律,从M(1)开始分析如下:
(1)
∵ 9 = 3^2
∴ F(1)=1/3
∴ M(1)=1/3
(2)
∵ 99 = 3^2 * 11
∴ F(1)=1/3,或F(1)=1/9,或F(2)=1/11(其余组合不必再列出,下同)
∴ M(2)=1/11
(3)
∵ 999 = 3^3 * 37
∴ F(1)=1/3,或F(1)=1/9,或F(3)=1/27,或F(3)=1/37
∴ M(3)=1/27
(4)
∵ 9999 = 3^2 * 11 * 101
∴ F(1)=1/3,或F(1)=1/9,或F(2)=1/11,或F(4)=1/101
∴ M(4)=1/101
(5)
∵ 99999 = 3^2 * 41 * 271
∴ F(1)=1/3,或F(1)=1/9,或F(5)=1/41,或F(5)=1/271
∴ M(5)=1/41
(6)
∵ 999999 = 3^3 * 7 * 11 * 13 * 37
∴ F(1)=1/3,或F(1)=1/9,或F(3)=1/27,或F(6)=1/7,或F(2)=1/11,或F(6)=1/13,或F(3)=1/37
∴ M(6)=1/7
(7)
∵ 9999999 = 3^2 * 239 * 4649
∴ F(1)=1/3,或F(1)=1/9,或F(7)=1/239,或F(7)=1/4649
∴ M(7)=1/239
(8)
∵ 99999999 = 3^2 * 11 * 73 * 101 * 137
∴ F(1)=1/3,或F(1)=1/9,或F(2)=1/11,或F(8)=1/73,或F(4)=1/101,或F(8)=1/137
∴ M(8)=1/73
(9)
∵ 999999999 = 3^4 * 37 * 333667
∴ F(1)=1/3,或F(1)=1/9,或F(3)=1/27,或F(9)=1/81,或F(3)=1/37,或F(9)=1/333667
∴ M(9)=1/81
可以看出当9有x位是,F的下标都是x的因子,并且小于x的因子与先前的分析是不冲突的
∴ M(5)=1/41,M(6)=1/7,M(7)=1/239,M(8)=1/73
- CFKaze
-
混循环小数,转化为分数的方法:
混循环小数,循环节有几个数,分母就有几个9;不循环的有几个数,分母再添几个0;分子是从不循环到一个循环节数,减去不循环的数。计算方法如下:
解:
(1)、1.42272727....(循环节是"27"两个数)
1.42 27 27 27……
=1+0.4227..
=1+(4227-42)/9900
=1+4185/9900
=1+837/1980
=1又837/1980
(2)、0.00313131...... (循环节是"31"两个数)
0.0031 31 31.....
=31/9900
(3)、2.043521521521……(循环节是"521"三个数)
2.043521521521……
=2+0.043 521 ...
=2+(43521-43)/999000
=2+43478/999000
=2+21739/499500
=2又21739/499500
- tt白
-
1、循环小数分纯循环小数和混循环小数.
2、纯循环小数的化法,如,0.ab(ab循环)=(ab/99),最后化简.举例如下:
0.3(3循环)=3/9=1/3;
0.7(7循环)=7/9;
0.81(81循环)=81/99=9/11;
1.206(206循环)=1又206/999.
3、混循环小数的化法,如,0.abc(bc循环)=(abc-a)/990.最后化简.举例如下:
0.51(1循环)=(51-5)/90=46/90=23/45;
0.2954(54循环)=(2954-29)/9900=13/44;
1.4189(189循环)=1又(4189-4)/9990=1又4185/9990=1又31/74.
如有帮助请采纳,手机则点击右上角的满意,谢谢!!
- 小菜G的建站之路
-
纯循环小数化为分数:将纯循环小数改写成分数,分子是一个循环节的数字组成的数;分母各位数字都是9,9的个数与循环节中的数字的个数相同。例如:0.111...=1/9、0.12341234...=1234/9999
混循环小数化为分数:将混循环小数改写成分数,分子是不循环部分与第一个循环节连成的数字组成的数,减去不循环部分数字组成的数之差;分母的头几位数字是9,末几位数字是0,9的个数跟循环节的数位相同,0的个数跟不循环部分的数位相同。例如:0.1234234234…=(1234-1)/9990 0.55889888988898...=(558898-55)/999900。
- 余辉
-
思考过程如下:
1、循环小数分纯循环小数和混循环小数.
2、纯循环小数的化法,如,0.ab(ab循环)=(ab/99),最后化简.举例如下:
0.3(3循环)=3/9=1/3;
0.7(7循环)=7/9;
0.81(81循环)=81/99=9/11;
1.206(206循环)=1又206/999.
3、混循环小数的化法,如,0.abc(bc循环)=(abc-a)/990.最后化简.举例如下:
0.51(1循环)=(51-5)/90=46/90=23/45;
0.2954(54循环)=(2954-29)/9900=13/44;
1.4189(189循环)=1又(4189-4)/9990=1又4185/9990=1又31/74.
- bikbok
-
一个混循环小数的小数部分可以化成分数:
这个分数的分子是第二个循环节以前的小数部分组成的数与小数部分中不循环部分组成的数的差。
分母的头几位数是9,末几位是0。其中9的个数与循环节中的位数相同,0的个数与不循环部分的位数相同。