- 陶小凡
-
最简洁用三倍角公式
sin3a=4sin(60-a)sinasin(60+a)
cos3a=4cos(60-a)cosacos(60+a)
得tan3a=tan(60-a)tanatan(60+a),
tan10°*tan50°*tan60°*tan70=
√3tan(60°-10)*tan10°*tan(10+60)=√3tan30°=1
- 晨官
-
我们可以利用三角函数的和差化积公式和倍角公式将四个正切函数相乘化简。
首先,将10°和70°表示为它们的补角,有:
tan10° = tan(90°-80°)
tan70° = tan(90°-20°)
接下来,利用正切函数的和差化积公式和倍角公式将四个正切函数相乘,有:
tan10°tan50°tan60°tan70°
= tan(90°-80°)tan50°tan60°tan(90°-20°)
= cot80°tan50°tan60°cot20°
= (cos80°/sin80°)(sin50°/cos50°)(sin60°/cos60°)(cos20°/sin20°)
= (cos50°cos60°sin20°sin80°) / (sin50°sin60°cos20°cos80°)
= [(cos50°cos60°sin20°sin80°) / (sin50°sin60°cos20°cos80°)] × [(sin70°sin10°cos30°cos40°) / (sin70°sin10°cos30°cos40°)]
= [(sin70°sin20°cos40°) / (sin10°sin80°cos30°cos60°)] × [(sin70°sin10°cos30°cos40°) / (sin20°sin80°cos50°cos60°)]
= [(sin70°cos40°) / (sin10°cos30°cos60°)] × [(sin70°cos30°) / (sin20°cos50°cos60°)]
= [(sin70°cos40°sin70°cos30°) / (sin10°sin20°cos30°cos50°cos60°cos60°)]
= [(sin140°sin70°cos40°cos30°) / (sin10°sin20°cos30°cos50°cos60°cos60°)]
= [(sin40°sin70°cos40°cos30°) / (sin10°sin20°cos30°cos50°cos60°cos60°)]
= [(1/2)(sin80°cos30°) / (sin10°sin20°cos30°cos50°cos60°cos60°)]
= [(1/2)(sin50°) / (sin10°sin20°cos30°cos50°cos60°cos60°)]
= [(1/2)(sin50°) / (cos10°cos20°cos30°cos50°cos60°)]
= [(1/2)(sin50°) / (1/8)(cos80°cos70°cos60°cos40°cos30°)]
= [8sin50° / (cos10°cos20°cos30°cos40°cos60°cos70°cos80°)]
= [8sin50° / (sin10°sin20°sin30°sin40°sin60°sin70°sin80°)]
因为
sin(90°-x) = cosx
所以,有
sin10°sin80° = cos10°cos10° = cos^2(10°)
sin20°sin70° = cos20°cos20° = cos^2(20°)
sin30°sin60° = cos30°cos30° = (1/4)
sin40°sin50° = cos50°cos50° = cos^2(50°)
sin70°sin20° = cos70°cos70° = cos^2(70°)
sin80°sin10° = cos80°cos80° = cos^2(80°)
将上述结果代入式子,有:
tan10°tan50°tan60°tan70° = [8sin50° / (sin10°sin20°sin30°sin40°sin60°sin70°sin80°)]
= [8sin50° / (cos^2(10°)cos^2(20°)(1/4)cos^2(50°)cos^2(70°)cos^2(80°))]
= [8sin50° / (cos^2(10°)cos^2(20°)cos^2(50°)cos^2(70°)cos^2(80°))]
= [8sin50° / (sin10°sin80°sin20°sin70°sin50°sin40°)]
= [8sin50° / (cos10°cos20°cos30°cos40°cos60°cos70°
- 神乐1103
-
sin10°sin50°sin60°sin70°
=sin10°cos20°cos40°sin60°
=cos10sin10°cos20°cos40°sin60°/cos10
=√3/16sin80/cos10
=√3/16sin80/sin80
=√3/16
cos10 cos60 cos50 cos70
= cos10 cos70 cos50 cos60
= 1/2(cos80 + cos60) cos50 cos60
= 1/2(cos80 cos50 + cos60 cos50) cos60
= 1/2[(cos130 + cos30)/2 + cos50 /2)] cos60
= 1/4[- cos50 + cos30 + cos50] cos60
= 1/4cos30 cos60
=√3/16
所以答案=1
但是分母我没想出不用积化和差的方法
- 赵大哥哥哥
-
tan50°*tan60°*tan70°=tan50°+tan60°+tan70°,
所以tan10°*tan50°*tan60°*tan70°
=tan10°*(tan50°+tan70°+√3)
=tan10°*[sin120°/(cos50°cos70°)+√3]
=tan10°*[√3/(2cos50°cos70°)+√3]
=√3tan10°*[1/(cos20°+cos120°)+1]
=√3*sin10°/cos10°*(cos20°+1/2)/(cos20°-1/2)
=√3*(2sin10°cos20°+sin10°)/(2cos10°cos20°-cos10°)
=√3*sin30°/cos30°
=1.