- 黑桃花
-
铝目前是电子散热器使用最广泛的材料。铝的特性非常适合于制造散热器。导热性能好,价格便宜。下面介绍一下散热行业所使用的纯铝和铝合金的特性,使大家对铝及铝合金有个教深入的认识。 一• 纯铝 • 密度:铝是一种很轻的金属,密度为 2.72 克 / 厘米 3 ,约为纯铜的 1/3 。 • 导电导热性:铝的导热及导电性能好,当铝的截面和长度与铜相同时,铝的导电能力约为铜的 61 %,如果铝与铜的重量相同尔截面不同(长度相等),则铝的导电能力为铜的 200 %。 • 化学特性:抗大气腐朽性能好,因为其表面易形成致密的氧化铝膜,能阻止内部金属的进一步氧化,铝与浓硝酸、有机酸及食品基本不起反应。 • 铝呈面心立方结构,工业用纯铝塑性极高 ( ψ =80%), 很容易承受各种成型工艺,但其强度过低, σ b 约为 69Mpa, 故纯铝只能通过冷变形强化或合金化来提高其强度后,才可以作为结构材料; • 铝是非磁性,无火花材料,且反射性能好,既能反射可见光,也能反射紫外线; • 铝中的杂质为硅和铁,当杂质含量越高时,其导电性,抗腐蚀性及塑性越低; 二 . 铝合金 • 如果在铝中加入适量的某些合金元素,再经过冷加工或者热处理,可以大幅度的改善某些特性,铝中最常用的合金元素为铜、镁、硅、锰、锌 , 这些元素有时单独加入,有时配合加入,除了上述元素外,有时还加入微量的钛、硼、铬等。 • 根据铝合金的成分及生产工艺特点,可以分为铸造铝合金及形变铝合金两类。 • 形变铝合金:这类铝合金通常通过热态或冷态的压力加工,即经过轧制,挤压等工序,制成板材、管材、棒材以及各种型材使用,这类合金要求具有相当高的塑性,故合金含量较少。 • 铸造铝合金则是将液态金属直接浇注在砂型中,制成各种形状复杂的零件,对这类合金要求具有良好的铸造性,即良好的流动性,合金含量少时,适宜做形变铝合金,合金含量多时,做铸造铝合金。 • 铝合金的弹性模量小,仅相当于钢材的 1/3 ,即在相同的截面下,加以相同的载荷,铝合金的弹性变形是钢的 3 倍,承受力不强,但抗震性能好。 • 铝合金的硬度范围 ( 包括退火和时效硬化状态 ) 为 20~120HB 。最硬的铝合金比钢材还软。 • 铝合金的抗拉强度极限为 90Mpa( 纯铝 ) 到 600Mpa( 超硬铝 ) ,与钢材相比差距较大。 • 铝合金的熔点较低(一般在 600 ℃左右,钢在 1450 ℃左右)。 • 铝合金在常温及高温下均具有优良的塑性,可以采用挤压法制成截面形状极为复杂、而且壁薄、尺寸精度高的结构零件。 • 铝合金除有适宜的机械性能之外,还具有优良的耐腐蚀,导热导电及抛旋光性能。 三 . 名词解释 : : σ b :抗拉强度(强度极限)是相当于拉断前的最大负荷应力,即试样所能承受的的最大负荷除以原始截面积。 ψ:断面收缩率,是试样断裂后截面的相对收缩值,等于截面的的绝对收缩量除以试样是的原始面积。 塑性:断裂前金属发生塑性变形(即残余变形)的能力 。 四 .铝及铝合金国际牌号命名体系 1.纯铝(铝含量不小于99.00%) 1XXX 2.合金组别按下列主要合金元素划分 1.Cu(铜) 2XXX 2. Mn(锰) 3XXX 3. Si(硅) 4XXX 4. Mg(镁) 5XXX 5. Mg+Si(镁+硅) 6XXX 6. Zn(锌) 7XXX 7. 其他元素 8XXX 8. 备用组 9XXX 1XXX组表示纯铝(其铝含量不小于99.00%),其最后两位数字表示最低铝百分含量众小数点后面的两位. 牌号的第2位数字表示合金元素或杂质极限含量的控制情况.如果第2位为0,则表示其杂质极限含量无特殊控制;如果是1-9,则表示对一项或一项以上的单个杂质或合金元素极限含量有特殊控制. 2XXX-8XXX牌号中的最后两位数字没有特殊意义,仅用来识别同一组中的不同合金,其第2位表示改型情况.如果第2位为0,则表示为原始合金;如果是1-9,则表示为改型合金. 6063-T5 铝材成分标准含量表 注释:含量为% 成分 Si Fe Cu Mn Mg Zn Cr Ti 标准含量 0.2~0.6 <=0.35 <=0.1 <=0.1 0.45~0.9 <=0.1 <=0.1 <=0.1 五. 铝合金中国牌号的代号的含义 L -- 铝 LF -- 防锈铝合金 (Ai - Mg 、 Ai - Mn) LY -- 硬铝合金 (Ai - Cu - Mg) LC -- 超硬铝合金 (Ai - Cu - Mg - Zn ) LD -- 锻铝合金 (Ai - Mg - Si & Cu - Mg - Si) LT -- 特殊铝合金 六.实际应用 目前在散热器行业使用的铝合金主要有下面几种: 1.Al6063/ Al6061 优良的可塑性使之可以挤压的工艺制造型材散热器。几乎可以制造任何形状的散热器,工艺成熟,价格便宜,可加工性能高。 2.铸铝 主要应用于大型不规则外形散热器及设备机柜一体化的散热器。 3.LF/LY系列 主要应用在特殊使用环境的电子设备散热器。使用环境对硬度和防腐蚀性有一定的要求。 目前较多使用的是LY12。 铝合金热处理工艺 铝合金热处理原理 铝合金铸件得热处理就是选用某一热处理规范,控制加热速度升到某一相应温度下保温一定时间以一定得速度冷却,改变其合金的组织,其主要目的是提高合金的力学性能,增强耐腐蚀性能,改善加工型能,获得尺寸的稳定性。 3.1.1铝合金热处理特点 众所周知,对于含碳量较高的钢,经淬火后立即获得很高的硬度,而塑性则很低。然而对铝合金并不然,铝合金刚淬火后,强度与硬度并不立即升高,至于塑性非但没有下降,反而有所上升。但这种淬火后的合金,放置一段时间(如4~6昼夜后),强度和硬度会显著提高,而塑性则明显降低。淬火后铝合金的强度、硬度随时间增长而显著提高的现象,称为时效。时效可以在常温下发生,称自然时效,也可以在高于室温的某一温度范围(如100~200℃)内发生,称人工时效。 3.1.2铝合金时效强化原理 铝合金的时效硬化是一个相当复杂的过程,它不仅决定于合金的组成、时效工艺,还取决于合金在生产过程中缩造成的缺陷,特别是空位、位错的数量和分布等。目前普遍认为时效硬化是溶质原子偏聚形成硬化区的结果。 铝合金在淬火加热时,合金中形成了空位,在淬火时,由于冷却快,这些空位来不及移出,便被“固定”在晶体内。这些在过饱和固溶体内的空位大多与溶质原子结合在一起。由于过饱和固溶体处于不稳定状态,必然向平衡状态转变,空位的存在,加速了溶质原子的扩散速度,因而加速了溶质原子的偏聚。 硬化区的大小和数量取决于淬火温度与淬火冷却速度。淬火温度越高,空位浓度越大,硬化区的数量也就越多,硬化区的尺寸减小。淬火冷却速度越大,固溶体内所固定的空位越多,有利于增加硬化区的数量,减小硬化区的尺寸。 沉淀硬化合金系的一个基本特征是随温度而变化的平衡固溶度,即随温度增加固溶度增加,大多数可热处理强化的的铝合金都符合这一条件。沉淀硬化所要求的溶解度-温度关系,可用铝铜系的Al-4Cu合金说明合金时效的组成和结构的变化。图3-1铝铜系富铝部分的二元相图,在548℃进行共晶转变L→α+θ(Al2Cu)。铜在α相中的极限溶解度5.65%(548℃),随着温度的下降,固溶度急剧减小,室温下约为0.05%。 在时效热处理过程中,该合金组织有以下几个变化过程: 3.1.2.1 形成溶质原子偏聚区-G• (Ⅰ)区 在新淬火状态的过饱和固溶体中,铜原子在铝晶格中的分布是任意的、无序的。时效初期,即时效温度低或时效时间短时,铜原子在铝基体上的某些晶面上聚集,形成溶质原子偏聚区,称G• (Ⅰ)区。G• (Ⅰ)区与基体α保持共格关系,这些聚合体构成了提高抗变形 的共格应变区,故使合金的强度、硬度升高。 3.1.2.2 G• 区有序化-形成G• (Ⅱ)区 随着时效温度升高或时效时间延长,铜原子继续偏聚并发生有序化,即形成G•P(Ⅱ)区。它与基体α仍保持共格关系,但尺寸较G•P(Ⅰ)区大。它可视为中间过渡相,常用θ”表示。它比G•P(Ⅰ)区周围的畸变更大,对位错运动的阻碍进一步增大,因此时效强化作用更大,θ”相析出阶段为合金达到最大强化的阶段。 3.1.2.3形成过渡相θ′ 随着时效过程的进一步发展,铜原子在G•P(Ⅱ)区继续偏聚,当铜原子与铝原子比为1:2时,形成过渡相θ′。由于θ′的点阵常数发生较大的变化,故当其形成时与基体共格关系开始破坏,即由完全共格变为局部共格,因此θ′相周围基体的共格畸变减弱,对位错运动的阻碍作用亦减小,表现在合金性能上硬度开始下降。由此可见,共格畸变的存在是造成合金时效强化的重要因素。 3.1.2.4 形成稳定的θ相 过渡相从铝基固溶体中完全脱溶,形成与基体有明显界面的独立的稳定相Al2Cu,称为θ相 此时θ相与基体的共格关系完全破坏,并有自己独立的晶格,其畸变也随之消失,并随时效温度的提高或时间的延长,θ相的质点聚集长大,合金的强度、硬度进一步下降,合金就软化并称为“过时效”。θ相聚集长大而变得粗大。 铝-铜二元合金的时效原理及其一般规律对于其他工业铝合金也适用。但合金的种类不同,形成的G•P区、过渡相以及最后析出的稳定性各不相同,时效强化效果也不一样。几种常见铝合金系的时效过程及其析出的稳定相列于表3-1。从表中可以看到,不同合金系时效过程亦不完全都经历了上述四个阶段,有的合金不经过G•P(Ⅱ)区,直接形成过渡相。就是同一合金因时效的温度和时间不同,亦不完全依次经历时效全过程,例如有的合金在自然时效时只进行到G•P(Ⅰ)区至G•P(Ⅱ)区即告终了。在人工时效,若时效温度过高,则可以不经过G•P区,而直接从过饱和固溶体中析出过渡相,合计时效进行的程度,直接关系到时效后合金的结构和性能。 表3-1几种铝合金系的时效过程及其析出稳定的强化相 3.1.3影响时效的因素 3.1.3.1从淬火到人工时效之间停留时间的影响 研究发现,某些铝合金如Al-Mg-Si系合金在室温停留后再进行人工时效,合金的强度指标达不到最大值,而塑性有所上升。如ZL101铸造铝合金,淬火后在室温下停留一天后再进行人工时效,强度极限较淬火后立即时效的要低10~20Mpa,但塑性要比立刻进行时效的铝合金有所提高。 3.1.3.2合金化学成分的影响 一种合金能否通过时效强化,首先取决于组成合金的元素能否溶解于固溶体以及固溶度随温度变化的程度。如硅、锰在铝中的固溶度比较小,且随温度变化不大,而镁、锌虽然在铝基固溶体中有较大的固溶度,但它们与铝形成的化合物的结构与基体差异不大,强化效果甚微。因此,二元铝-硅、铝-锰、铝-镁、铝-锌通常都不采用时效强化处理。而有些二元合金,如铝-铜合金,及三元合金或多元合金,如铝-镁-硅、铝-铜-镁-硅合金等,它们在热处理过程中有溶解度和固态相变,则可通过热处理进行强化。 3.1.3.3合金的固溶处理工艺影响 为获得良好的时效强化效果,在不发生过热、过烧及晶粒长大的条件下,淬火加热温度高些,保温时间长些,有利于获得最大过饱和度的均匀固溶体。另外在淬火冷却过程不析出第二相,否则在随后时效处理时,已析出相将起晶核作用,造成局部不均匀析出而降低时效强化效果。 4.纯铝 较多使用于对导热性能要求较高的环境。总体来说较少使用。 AL6061合金铝几个状态:O、T4、T6、T451、T651、T6510、T6511典型用途:阳极氧化性能良好,用于要求有一定强度,可焊性与抗腐蚀性高的各种工业结构件,如制造卡车、塔式建筑、 船舶、电车、铁道车辆、家具等用的板管,棒,型材。 AL6063合金铝几个状态:O、T4、T83、T1、T5、T6典型用途:建筑型材,灌溉管材,供车辆,台架,家具,升降机,栅栏等用的挤压材料,以及飞机,船舶,轻工业部门,建筑物等用的不同颜色的装饰构件。 6061 要求有一定强度、可焊性与抗蚀性高的各种工业结构性,如制造卡车、塔式建筑、船舶、电车、家具、机械零件、精密加工等用的管、棒、形材、板材 6063 建筑型材,灌溉管材以及供车辆、台架、家具、栏栅等用的挤压材料 挤压材料,无疑6063是最好的,挤压后抛光、阳极氧化性能都比6061要好。6061是一种和6063性能相近的材料,但它是属于结构件材料,可焊性、抗蚀性和结构强度好是其特点,但和6063还是存在细微的差别,其挤出性能不如6063.